Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

24.05.2019

WAP-Abschlussbericht

Warn- und Alarmplan Rhein (WAP)

Intensivierte Gewässerüberwachung (INGO) NRW

1,4-Dioxan (CAS 123-91-1) im Rhein

Sofortbericht vom 23.05.2019:

Vom 29.09.2018 bis zuletzt Ende Januar diesen Jahres berichten wir von deutlich erhöhten Dioxan-Befunden im Rhein, deren Ursachen seitens des LANUV, der WSP, der BRn und des MULNV intensiv untersucht wurden. In den Folgemonaten lagen die gemessenen Konzentrationen unterhalb der Meldeschwellen teilweise unterhalb der Bestimmungsgrenze von $0.5~\mu g/L$.

Aktuelle Proben, die von der Max Prüss auf einer Talfahrt im Rheinverlauf genommen wurden, zeigen mit dem Schwerpunkt auf der rechten Rheinseite ab Kilometer 785 (Brücke A42, Duisburg) erhöhte Konzentrationen, ab km 811 (Wesel Büderich) über 3 µg/l (Tab. 1).

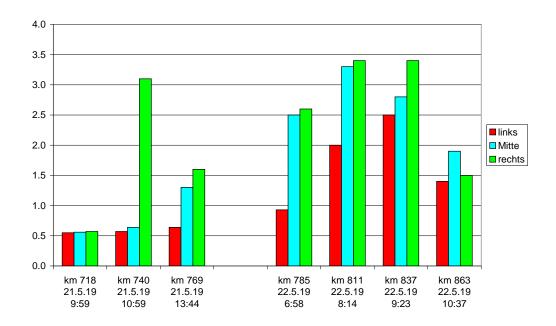
In Lobith wurde in der Probe aus der Nacht vom 22. auf den 23.05. ebenfalls eine Konzentration oberhalb der Meldeschwelle von 3 μ g/l festgestellt.

Weitere Proben von Rhein km 740 und 659 sind vorhanden, werden aber zugunsten der Beobachtung des weiteren Verlaufes von Lobith und Bimmen hinten an gestellt.

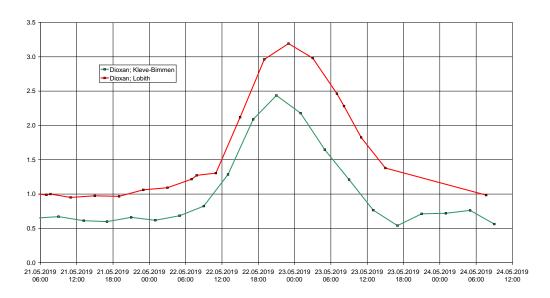
Abschlussbericht:

Die Welle hat die IMBL zwischenzeitlich passiert. In den nachfolgenden Tabellen sind die bereits berichteten Ergebnisse sowie Ergebnisse weiterer Proben aus Längs- und Querprofilen des Rheins dargestellt. Neue Befunde wurden gelb hervorgehoben, die Maximalbefunde in Bimmen und Lobith wurden rot gedruckt.

Tab. 1: Probenahme Max Prüss; Dioxan im Rhein; die Konzentrationen wurden anhand einer Kalibriergeraden ermittelt, die für den Bereich von 0.5 bis 5 μg/l gültig ist


Probenahme			Konz. in μg/l
Messstelle	Anfang	Ende	1,4-Dioxan
Bad Honnef	20.05.19 10:30		0,60
Bad Honnef links	20.05.19 06:50		< 0.5
km 718 links	21.05.19 10:00		0,55
km 718 Mitte	21.05.19 09:59		0,56
km 718 rechts	21.05.19 09:58		0,57
km 740 links	21.05.19 11:00		0,57
km 740 Mitte	21.05.19 10:59		0,64
km 740 rechts	21.05.19 10:58		3,1
km 769 links	21.05.19 13:45		0,64
km 769 Mitte	21.05.19 13:44		1,3
km 769 rechts	21.05.19 13:43		1,6
km 785 links	22.05.19 06:59		0,93
km 785 Mitte	22.05.19 06:58		2,5
km 785 rechts	22.05.19 06:57		2,6
km 811 links	22.05.19 08:15		2,0
km 811 Mitte	22.05.19 08:14		3,3
km 811 rechts	22.05.19 08:13		3,4
km 837 links	22.05.19 09:24		2,5
km 837 Mitte	22.05.19 09:23		2,8
km 837 rechts	22.05.19 09:22		3,4
km 863 links	22.05.19 10:38		1,4
km 863 Mitte	22.05.19 10:37		1,9
km 863 rechts	22.05.19 10:36		1,5
	11		

Tab. 2: Probenahme IMBL; Dioxan im Rhein; die Konzentrationen wurden anhand einer Kalibriergeraden ermittelt, die für den Bereich von 0.5 bis 5 μ g/l gültig ist.


Probenahme			
Messstelle	Anfang	Ende	1,4-Dioxan
Lobith	21.05.19 19:00		0,97
Lobith	21.05.19 23:00		1,1
Lobith	22.05.19 03:00		1,1
Lobith	22.05.19 07:00		1,2
Lobith	22.05.19 07:50		1,3
Lobith	22.05.19 11:00		1,3
Lobith	22.05.19 15:00		2,1
Lobith	22.05.19 19:00		3,0
Lobith	22.05.19 21:00		3,0
Lobith	22.05.19 23:00		3,2
Lobith	23.05.19 03:00		3,0
Lobith	23.05.19 07:00		2,5
Lobith	23.05.19 08:10		2,3
Lobith	23.05.19 11:00		1,8
Lobith	23.05.19 15:00		1,4
Lobith	24.05.19 07:40		0,98
Kleve-Bimmen	22.05.19 01:00		0,62
Kleve-Bimmen	22.05.19 05:00		0,68
Kleve-Bimmen	22.05.19 09:00		0,82
Kleve-Bimmen	22.05.19 13:00		1,3
Kleve-Bimmen	22.05.19 17:10		2,1
Kleve-Bimmen	22.05.19 21:00		2,4
Kleve-Bimmen	23.05.19 01:00		2,2
Kleve-Bimmen	23.05.19 05:00		1,6
Kleve-Bimmen	23.05.19 09:00		1,2
Kleve-Bimmen	23.05.19 13:00		0,77

Kleve-Bimmen	23.05.19 17:00	0,54
Kleve-Bimmen	23.05.19 21:00	0,71
Kleve-Bimmen	24.05.19 01:00	0,72
Kleve-Bimmen	24.05.19 05:00	0,76
Kleve-Bimmen	24.05.19 09:00	0,56

In Abbildung 1 sind die Ergebnisse der Querprofilmessungen graphisch aufgearbeitet. Dort ist die rechtsrheinische Belastung ab km 740 erkennbar.

In Abbildung 2 ist der Konzentrationsverlauf in Bimmen und Lobith dargestellt. Auch hier ist die rechtsrheinische Belastung noch gut zu erkennen.

In Tabelle 3 sind weitere Ergebnisse aus Rhein, Lippe und Sieg aufgeführt.

Tab. 3: Dioxanbefunde in Rhein, Lippe und Sieg

Probenahme			
Messstelle	Anfang	Ende	1,4-Dioxan
Orsoy links	21.05.19 07:18		0,67
Orsoy Mitte	21.05.19 07:17		0,59
Orsoy rechts	21.05.19 07:16		0,72
Götterswickerhamm	21.05.19 08:25		0,80
Wesel (Rhein)	21.05.19 08:25		0,70
Wesel (Rhein)	23.05.19 07:30		0,94
Xanten	23.05.19 07:55		0,64
Menden (Sieg)	20.05.19 09:10		< 0.5
Wesel (Lippe)	21.05.19 08:10		17
Wesel (Lippe)	23.05.19 07:10		9,5

Aus der Kläranlage Emschermündung werden Rückstellproben untersucht. Die Ergebnisse werden im Anschluss berichtet.

Verwendung:

Dioxan wird als Lösungsmittel verwendet und entsteht als Nebenprodukt.

Ökotoxikologische Daten:

EC50	Lepomis macrochirus	Blauer Sonnenbarsch	4269 mg/l (48h)
EC50	Daphnia magna	Großer Wasserfloh	4700 mg/l (24h)
EC50	Chlorococcales	Grünalge	3200 mg/l (24h)
NOEC	Pimphales promelas	Amerikanische Dickkopfelritze	>103 mg/l (32d)

NOEC	Pseudokirchneriella supcapitata	Grünalge	580 mg/l (72h)
NOEC	Ceriodaphnia dubia	Wasserfloh-Art	625 mg/l (7d)

Quelle: Risk Assessment Report der EU (2002) sowie Screening Assessment aus Kanada (2010)

Bewertung:

1,4-Dioxan ist in Wassergefährdungsklasse (WGK) 2 – wassergefährdend – und als biologisch nicht abbaubar eingestuft.

Aufgrund der log Kow-Werte zwischen -0,27 und -0,42 ist eine Bioakkumulation unwahrscheinlich.

Die log Pow-Werte weisen darauf hin, dass keine Adsorption von 1,4-Dioxan an Sedimente zu erwarten ist.

Eine akute Schädigung der aquatischen Biozönose des Rheins ist bei den vorliegenden Konzentrationen nicht zu besorgen.

Der Stoff ist allerdings persistent und verbleibt vor allem in der Wasserphase. Es gibt Hinweise auf eine Elimination von 1,4-Dioxan durch oxidative Verfahren in Kläranlagen.

Der UBA-Trinkwasserleitwert für 1,4-Dioxan liegt bei 5 μg/l.

Der in den Niederlanden anerkannte Trinkwasserleitwert (RIWA) beträgt 3 µg/L.

Weitere informationen im ECHO-Bericht zu 1,4-Dioxan auf der Internetseite des LANUV.

Informationswege:

Die Wasserschutzpolizei KK Umweltschutz wurde benachrichtigt, um ggfls. weitere Ermittlungen einzuleiten.

Die Bezirksregierung Düsseldorf wird benachrichtigt und um eine Meldung als Information über den Warn- und Alarmdienst Rhein (WAP) gebeten.

Die Betreiber der Trinkwassergewinnungsanlagen am Rhein werden über den Warn- und Alarmdienst Rhein (WAP) über vorliegende Schadstoffwellen informiert. Die Trinkwasserversorger können im Bedarfsfall eigenverantwortlich anlagen-spezifisch erforderliche Maßnahmen des Trinkwasserschutzes rechtzeitig einleiten.