

Fakultät für Biologie Lehrstuhl für Genetik

## Abschlussbericht für das Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV NRW) zu dem Forschungsvorhaben

# Entwicklung und Evaluierung eines Resistenz-Microarrays für die Detektion von Resistenzdeterminanten in Bakterien aus Kläranlagen

Bielefeld, Juni 2007



**Prof. Dr. A. Pühler** Fakultät für Biologie Lehrstuhl für Genetik

## Projektlaufzeit: 01.06.2006 bis 30.11.2006

## **Projektverantwortliche Personen:**

Prof. Dr. Alfred Pühler Lehrstuhl für Genetik Fakultät für Biologie Universität Bielefeld Universitätsstrasse 25 33615 Bielefeld

Dr. Andreas Schlüter Lehrstuhl für Genetik Fakultät für Biologie Universität Bielefeld Universitätsstrasse 25 33615 Bielefeld

Dr. Rafael Szczepanowski Lehrstuhl für Genetik Fakultät für Biologie Universität Bielefeld Universitätsstrasse 25 33615 Bielefeld

## Inhaltsverzeichnis

| 1.  | Zusammenfassung                                                                |
|-----|--------------------------------------------------------------------------------|
| 2.  | Einleitung                                                                     |
| 3.  | Aufgabenstellung                                                               |
| 4.  | Auswahl von Resistenzgenen zur Herstellung von spezifischen Oligonukleotiden   |
|     | und Primern                                                                    |
| 5.  | Entwicklung von Resistenzgen-spezifischen Oligonukleotiden                     |
| 6.  | Primerentwicklung zur Herstellung der Hybridisierungssonden11                  |
| 7.  | Isolierung von Gesamt-Plasmid-DNAs aus Belebtschlammbakterien zur              |
|     | Erzeugung von Resistenzgen-spezifischen Amplikons mittels PCR12                |
| 8.  | Nachweis der in Belebtschlammbakterien vorhandenen, Plasmid-lokalisierten      |
|     | Resistenzgene mittels PCR                                                      |
| 9.  | Hybridisierung von Multiplex-Sonden gegen Resistenzgen-spezifische Amplikons16 |
| 10. | Layout und Fabrikation des Resistenz-Microarrays sowie Hybridisierung und      |
|     | Datenerfassung durch Fluoreszenzmesseung 17                                    |
| 11. | Effizienztest des Resistenz-Microarrays                                        |
| 12. | Ausblick                                                                       |
| 13. | Literatur                                                                      |
| 14. | Anhang                                                                         |
| 14  | .1 Abbildungen                                                                 |
| 14  | .2 Tabellen                                                                    |
| 14  | .3 Abkürzungsverzeichnis und Glossar                                           |

#### 1. Zusammenfassung

Zur Detektion von Resistenzdeterminanten, die in Bakterien einer kommunalen Abwasserkläranlage vorkommen, wurde ein Resistenz-Microarray entwickelt. Insgesamt wurden 650 DNA-Sequenzen von Resistenzgenen aus verschiedenen Sequnezdatenbanken extrahiert. Multiple Alignments und phylogenetische Analysen haben zur Auswahl von 197 Genen für das Design und die Generierung von 70 Basen langen Oligonukleotiden geführt, die auf dem Array die Resistenzgene spezifisch repräsentieren sollen. Zusätzlich wurden 35 Oligonukleotide als Kontrollen eingesetzt. Zur Herstellung von Hybridisierungssonden wurden 200 Primerpaare entworfen, die das jeweilige Oligonukleotid flankieren. PCRs zum Test der Spezifität der 200 Primerpaare mit Gesamt-Plasmid-DNAs der Belebtschlammbakterien als Template haben zu 146 PCR-Produkten geführt. Die Sequenzierung ausgewählter Amplikons hat deren Identität verifiziert. Die Hybridisierungssonden wurden in Multiplex-PCRs hergestellt. Erste Hybridisierungsversuche mit dem hergestellten Resistenz-Microarray haben gezeigt, dass ein Nachweis von Resistenzgenen in einem komplexen DNA-Gemisch möglich ist.

#### 2. Einleitung

Der weit verbreitete Einsatz von Antibiotika bei der Behandlung von Infektionskrankheiten in der Human- und Tiermedizin verursachte ein vermehrtes Auftreten von Antibiotikaresistenten Bakterien. Zahlreiche Studien belegen, dass der Anteil resistenter Bakterien in Korrelation zum mengenmäßigen Einsatz des entsprechenden Antibiotikums über die Zeit ansteigt (Übersichtsartikel: (Baquero & Blàzquez, 1997; Glynn et al., 1998; Livermore, 2000; Mazel & Davies, 1999). Besorgniserregend ist z.B. das Auftreten Methicillin-resistenter Staphylococcus aureaus Stämme (MRSA), Vancomycin-resistenter Enterococcus Stämme (VRE), Penicillin-resistenter Streptococcus pneumoniae Stämme und multiresistenter Enterobakterien und Pseudomonas aeruginosa Stämme in Kliniken. Teilweise stehen keine Antibiotika zur Verfügung, die für die Behandlung von Infektionen, die durch diese Bakterien hervorgerufen werden, eingesetzt werden können. Diese Beobachtungen werfen die Frage auf, welche Mechanismen für die schnelle Verbreitung von Resistenzdeterminanten eine Rolle spielen und wie es zur Entstehung multiresistenter Bakterienstämme kommen kann. Resistenz kann prinzipiell durch Punktmutation vorhandener Gene oder durch die Aufnahme neuer genetischer Information entstehen. Die laterale Aufnahme von Resistenzdeterminanten, auch als horizontaler Transfer (HT) bezeichnet, kann prinzipiell über Phagen-vermittelte Transduktion, über Aufnahme nackter DNA aus dem Medium (Transformation) oder über Konjugation bakterieller Zellen erfolgen (Davison, 1999). Horizontaler Gentransfer (HGT) ist für die Anpassungsfähigkeit bakterieller Gemeinschaften an variable Umweltbedingungen und für die Evolution der Bakterien von zentraler Bedeutung. Durch HGT können außer Resistenzen gegen Antibiotika, auch Schwermetalleresistenzen, degradative Eigenschaften oder andere phänotypische Merkmale erworben werden, die unter bestimmten Umweltbedingungen einen selektiven Vorteil vermitteln, der das Überleben sichern und das Wachstum verbessern kann. Für die Verbreitung von Resistenzdeterminanten ist wohl der horizontale Transfer mit Hilfe mobiler genetischer Elemente (MGE), insbesondere konjugativer Plasmide der wichtigste Mechanismus (Davies, 1994; Davies & Wright, 1997; Mazel & Davies, 1999; Olsen, 1999; Seveno et al., 2002; Tschäpe, 1994). Plasmide sind meistens zirkuläre Erbspeicher-Moleküle, die weitgehend selbstständig neben dem Haupterbspeicher, dem bakteriellen Chromosom, in Bakterien vorhanden sein können. Sie werden zu den mobilen genetischen Elementen gezählt, da sie auf andere Bakterien der gleichen Art oder fremder Arten übertragen werden können. Man unterscheidet selbsttransmissible Plasmide, die die genetische Information für ihre Transferierbarkeit tragen, und mobilisierbare Plasmide, die für ihren Transfer ein Helferplasmid benötigen.

Neben den Plasmiden spielen auch andere mobile genetische Elemente (MGE) wie z.B. Insertionssequenzen (IS), Transposons (Tn) und Integrons (In) bzw. Integron-spezifische Genkassetten eine wichtige Rolle für die Verbreitung genetischer Information (Bennett, 1999; Bennett, 2004; Collis & Hall, 1995; Gomez-Lus, 1998; Hall & Collis, 1995; Osborn & Boltner, 2002; Rowe-Magnus & Mazel, 1999; Smalla & Sobecky, 2002; Sundström, 1998). Die genannten Elemente bewerkstelligen die Translokation genetischer Marker innerhalb einer Replikationseinheit oder von einer Replikationseinheit auf ein anderes Replikon über den Mechanismus der Transposition bzw. der ortsspezifischen Rekombination. IS-Elemente, Transposons und Integrons befinden sich häufig auf Plasmiden und können mit Resistenzdeterminanten assoziiert sein. Damit gibt es in der Natur genetische Elemente, die den DNA-Transfer zwischen Replikons innerhalb einer Bakterienzelle und zwischen Zellen über Artgrenzen hinweg vermitteln können.

Im weiteren stellt sich die Frage an welchen Orten bevorzugt genetische Information transferiert wird. In diesem Zusammenhang sind Habitate zu nennen, die sich durch eine hohe mikrobielle Dichte und hohe Stoffwechselaktivitäten auszeichnen (Dröge *et al.*, 1998; Dröge *et al.*, 1999). Diese Eigenschaften treffen insbesondere auf Abwässer und Klärschlämme in Abwasserkläranlagen zu. Abwasser, das in kommunale Kläranlagen gelangt, setzt sich aus dem verunreinigten Wasser der privaten Haushalte, der Krankenhäuser, der Industrie und der

Agrarwirtschaft zusammen. Der Einsatz von Antibiotika zu therapeutischen und prophylaktischen Zwecken und als Futtermittelzusatz in der Masttierhaltung führt zur Selektion von antibiotikaresistenten Bakterien, die zusammen mit nicht metabolisierten Antibiotika im Abwasser die Kläranlage erreichen. Diverse Studien konnten sowohl Antibiotika als auch antibiotikaresistente Keime in Abwässern aus privaten Haushalten und Krankenhäusern nachweisen (Feuerpfeil et al., 1999; Guardabassi et al., 1999; Hartmann et al., 1998; Hartmann et al., 1999; Kümmerer, 2001; Kümmerer et al., 2000; Witte, 1998). So wurden z.B. die Antibiotika Ciprofloxacin und Ampicillin im Abwasser deutscher Krankenhäuser nachgewiesen (Hartmann et al., 1998; Kümmerer, 2001). Fontaine und Hoadley (1976) beschreiben das Vorkommen multiresistenter coliformer Bakterien in kommunalen und Krankenhaus-Abwässern. Einige der in dieser Studie nachgewiesenen Resistenzen waren auf Escherichia coli und Salmonella Rezipienten-Stämme übertragbar. Zahlreiche andere Studien beschreiben die Isolierung von mobilen genetischen Elementen, insbesondere von Plasmiden aus Abwässern und Belebtschlämmen (Blàzquez et al., 1996; Dröge et al., 2000; Heuer et al., 2002; Mach & Grimes, 1982; Smalla & Sobecky, 2002; Top et al., 1994; van Overbeek et al., 2002).

In Kläranlagen kann es zur Verbreitung von genetischem Material durch horizontalen Gentransfer, insbesondere bakterielle Konjugation, kommen (Feuerpfeil et al., 1999). Transfer von genetischem Material konnte bereits im Belebtschlamm von Kläranlagen (Marcinek et al., 1998) gezeigt werden. Konjugation im Belebtschlamm der Abwasserkläranlagen ist von besonderem Interesse für die Verbreitung von Resistenzdeterminanten. Resistente Bakterien, die in die Kläranlage eingeleitet werden, finden im Belebtschlamm Bedingungen vor, die für einen DNA-Transfer förderlich sind. So begünstigen gute Nähr- und Sauerstoffkonzentrationen die Vermehrung von Bakterien, was zu hohen Zelldichten (10<sup>9</sup> Bakterien pro ml Belebtschlamm) führt (Geisenberger *et al.*, 1999; Snaidr et al., 1997). Außerdem kann die Präsenz von Belebtschlammflocken, Partikel, die hauptsächlich aus organischer Biomasse bestehen, die Konjugation an festen Oberflächen begünstigen. Diverse Studien konnten den konjugativen Transfer von Resistenzdeterminanten im Belebtschlamm kommunaler Kläranlagen (Geisenberger et al., 1999; Marcinek et al., 1998) und einer Laboranlage (Nüsslein et al., 1992) feststellen.

Nach den Reinigungsprozessen in der Kläranlage wird das Wasser über den Vorfluter in der Regel in ein Fließgewässer eingeleitet. Das gereinigte Abwasser enthält etwa nur noch 0.1 % der Bakterien, die im Zulauf der Kläranlage nachweisbar waren. Dennoch kommt es somit unter Berücksichtigung der verarbeiteten Abwassermengen zu einer beträchtlichen Freisetzung von Mikroorganismen in die Umwelt, unter denen sich auch pathogene und Antibiotika-resistente Vertreter befinden können. Es besteht prinzipiell die Möglichkeit, dass aus Kläranlagen stammende Bakterien über die Nahrungskette ihren Weg zurück zum Menschen finden. Somit ergibt sich ein Gefährdungspotential im Hinblick auf die menschliche Gesundheit, insbesondere auch unter Berücksichtigung der Möglichkeit, dass in der Kläranlage durch Neukombination von genetischem Material Organismen mit veränderten Resistenz- bzw. Pathogenitätseigenschaften entstehen können.

## 3. Aufgabenstellung

Das Projekt hatte die Entwicklung und Evaluierung eines Resistenz-Microarrays zum Ziel. Dieser soll zur Detektion von Plasmid- und Chromosom-lokalisierten Resistenzdeterminanten von Bakterien unterschiedlicher Kompartimente einer kommunalen Abwasserkläranlage dienen. Die Abbildung 1 stellt die experimentelle Vorgehensweise vor.



Abbildung 1: Fließschema des Projekts

Es war vorgesehen, drei unterschiedliche Arten von Sonden zur Hybridisierung gegen den Resistenz-Microarray herzustellen. Die linke Spalte der Abb. 1zeigt die Herstellung von Sonden unter Verwendung einzelner Plasmide, die aus Kläranlagen-Bakterien isoliert wurden. Die mittlere Spalte beschreibt die Herstellung einer Sonde, die von isolierter GesamtplasmidDNA ausgeht. Die dritte Sonde (rechte Spalte der Abbildung 1) kann mit einer Gesamt-DNA, die aus Kläranlagen-Bakterien isoliert wird, als Ausgangsmaterial hergestellt werden. Die letzten beiden Sonden können durch den Einsatz der PCR hergestellt werden.

Im ersten Teil des Projekts sollten zur Fabrikation des Microarrays Resistenzgene ausgewählt und dazugehörige Resistenzgen-spezifische Oligonukleotide generiert werden. Es folgt die Herstellung des Arrays. Anschließend wird das Resistenz-Microarray durch Hybridisierung gegen die Resistenzgene getestet, die sich auf den am Lehrstuhl für Genetik sequenzierten Plasmiden aus Bakterien des Belebtschlamms befinden.

## 4. Auswahl von Resistenzgenen zur Herstellung von spezifischen Oligonukleotiden und Primern

Für das Design der Oligonukleotide, die spezifisch für Resistenzdeterminanten sind, wurden Antibiotika-Resistenzgene ausgewählt, die gegen Aminoglykoside, β-Laktame, Chloramphenicol, Macrolide, Methicillin, Quinolone und Fluoroquinolone, Rifampicin, Tetracycline, Trimethoprim und Sulfonamide sowie quaternäre Ammoniumverbindungen Resistenz vermitteln. Die Wirkung der Antibiotika dieser Klassen ist in Tabelle 1 dargestellt.

| Antibiotikaklasse               | Wirkung                                      |  |  |  |  |
|---------------------------------|----------------------------------------------|--|--|--|--|
|                                 |                                              |  |  |  |  |
| Quinolone / Fluoroquinolone     | Replikation                                  |  |  |  |  |
| Rifampicin                      | Transkription                                |  |  |  |  |
| Aminoglykoside                  | Proteinbiosynthese                           |  |  |  |  |
| Chloramphenicol                 | Proteinbiosynthese                           |  |  |  |  |
| Makrolide                       | Proteinbiosynthese                           |  |  |  |  |
| Tetracycline                    | Proteinbiosynthese                           |  |  |  |  |
| Trimethoprim, Sulfonamide       | Folsäuresynthese                             |  |  |  |  |
| β-Laktame, Methicillin          | Zellwandsynthese                             |  |  |  |  |
| Quaternäre Ammoniumverbindungen | Zellmenbran-Dissoziation, Enzyminaktivierung |  |  |  |  |

Tabelle 1: Ausgewählte Antibiotikaklassen und deren Wirkung

Die Suche nach Resistenzgenen in bakteriellen Populationen aus Kläranlagen führte zunächst zu Resistenzplasmiden, die aus Bakterien des Belebtschlamms und des Vorfluters kommunaler Abwasserkläranlagen isoliert und an der Universität Bielefeld sequenziert und charakterisiert wurden. Es handelt sich um die IncP-1 Resistenzplasmide pB2/3 (Heuer *et al.*, 2004), pB4 (Tauch *et al.*, 2003), pB8 (Schlüter *et al.*, 2005), pB10 (Schlüter *et al.*, 2003), pTB11 (Tennstedt *et al.*, 2005) und pRSB111 (Szczepanowski *et al.*, 2004), pRSB105 (Schlüter *et al.*, 2007), und pRSB107 (Szczepanowski *et al.*, 2005) und um das Quinolone-Resistenzplasmid pGNB2 (Bönemann *et al.*, 2006). Die Abbildungen der genannten Plasmide

sind im Anhang (Abbildung A1 und A2) vorzufinden. Zusätzlich konnten Klasse 1 Integronspezifische Sequenzen, die aus Belebtschlamm- und Vorfluterbakterien einer kommunalen Abwasserkläranlage isoliert und molekulargenetisch charakterisiert wurden (Tennstedt *et al.*, 2003), in die Suche einbezogen werden. Die Integron-spezifischen Sequenzen sind im Anhang in der Abbildung A3 dargestellt. Auf diese Weise konnten folgende Resistenzgene ausgewählt werden:

- Plasmid pB3: tet(A), sull, cmlA1, bla<sub>NPS-2</sub>
- Plasmid pB4: *mexD*, *bla*<sub>NPS-1</sub>
- Plasmid pB8: qacF, oxa-2
- Plasmid pB10: *tet*(A), *strA*, *strB*
- Plasmid pRSB111: *mph*(B)
- Plasmid pTB11: *aacA4*, *aadA1*, *aphA*
- pRSB101:  $bla_{TLA-2}$ , dhfr1, mph(A), orf11,  $qacE\Delta 1$
- pRSB105: mph, mel
- pRSB107: *aph*, *bla*<sub>TEM-1</sub>, *catA*, *dhfR*, *sulII*, *tetA*(C)
- pGNB2: *qnrS-2*
- Integron-spezifische Resistenzgenkassetten: *dfrII, dfrV, dfrVII, dfrXII, dfr17, dfrB2, aadB, aacA29b, aacC1, aadA2, aadA5, aadA8, qacF, qacH, cmlA5, catB2, oxa, oxa-1, oxa-10*

Für die Suche nach weiteren Resistenzgenen wurden verschiedene Datenbanken (SRS@EBI, NCBI) sowie Internetadressen von Kliniken und Universitäten (*http://www.lahey.org/Studies/* und *http://faculty.washington.edu/marilynr/*) durchsucht.

Das Ergebnis dieser Suche waren insgesamt ca. 650 Resistenzgensequenzen, die durch multiple Alignments auf ihre Eignung für die Erstellung von spezifischen Oligonukleotiden untersucht wurden.

Die multiplen Alignments wurden mit dem Programm ClustalX jeweils für eine Resistenzgenkategorie durchgeführt (z.B. alle Gene für Chloramphenicol-Acetyltransferasen getrennt von Genen für Chloramphenicol-Exportern). Der Ausschnitt eines multiplen Alignments ist in Abbildung 2 dargestellt.



Abbildung 2: Ausschnitt eines multiplen Alignments von Chloramphenicol-Acetyltransferase Genen generiert mit ClustalX (Jeanmougin *et al.*, 1998).

Die multiplen Alignments dienen der Überprüfung der Ähnlichkeit von Sequenzen und dem Auffinden von konservierten und Gen-spezifischen Regionen innerhalb der jeweiligen Genklassen. Zur übersichtlicheren Visualisierung wurden aus den multiplen Alignments phylogenetische Bäume (mit der *Neighbour-joining* Methode und einem Bootstrap-Wert von 1000) erstellt. Ein Beispiel für eine solche Darstellung ist in Abbildung 3 gezeigt.



Abbildung 3: Phylogenetischer Baum von Genen, die Chloramphenicol-Acetyltransferase kodieren. Der Baum wurde aus einem in ClustalX (Jeanmougin *et al.*, 1998) generierten Alignment mit der *Neighbour-joining* Methode (Bootstrap-Wert von 1000) und mittels TreeView (Page, 1996) visualisiert. Die Länge des Balkens entspricht einem Sequenzunterschied von zehn Basen pro 100 Basen.

Mit Hilfe des phylogenetischen Baums kann die Verwandtschaft und die Ähnlichkeit von Genen graphisch veranschaulicht werden. Dazu wird die Distanz, die ein Maß für Ähnlichkeit ist, zwischen Genen betrachtet. Unter Verwendung des Maßstabs, in diesem Fall entspricht die Länge des Balkens einem Unterschied in der DNA-Sequenz von zehn Basen pro 100 Basen, kann so eine Aussage über die Ähnlichkeit von Genen getroffen werden. Werden z. B. die Gene *catB8* (AY033653) und *catB8* (AF227506) betrachtet so fällt auf, dass sie sehr ähnlich sein müssen. Tatsächlich sind diese Gene identisch. Auf der anderen Seite müssten

sich die Gene *cat* (M35190) und *catP* (U15027) deutlich unterschieden. Dies ist auch der Fall. Zwischen den Genen besteht nur eine 67 %ige Ähnlichkeit.

Innerhalb eines Baums wurden nahe verwandte Gene nochmals einem multiplen Alignment unterzogen (siehe Abbildung 4A). Für das Oligo-Design wurden dann nur die Gene ausgewählt, die sich in mindestens 5 % ihrer DNA-Sequenz unterschieden haben (siehe Abbildung 4B).



Abbildung 4: Auswahl von Resistenzgenen für das Design von spezifischen Oligonukleotiden. Abbildung 4A zeigt die Bildung von Gruppen für zusätzliche multiple Alignments (Rote Kästen) innerhalb einer Klasse von Genen. Abbildung 4B zeigt die ausgewählten Gene für das Design von Oligonukleotiden. Die Länge des Balkens entspricht einem Sequenzunterschied von zehn Basen pro 100 Basen.

Diese Vorgehensweise ermöglichte die Auswahl von 248 Resistenzgenen für das Design von Resistenzgen-spezifischen Oligonukleotiden. Die Verteilung der Anzahl der Resistenzgene auf verschiedene Antibiotikaklassen ist in Tabelle 2 dargestellt.

| Antibiotikaklasse               | Anzahl der ausgewählter<br>Resistenzgene | 1 |
|---------------------------------|------------------------------------------|---|
|                                 |                                          |   |
| Quinolone / Fluoroquinolone     | 8                                        |   |
| Rifampicin                      | 1                                        |   |
| Aminoglykoside                  | 37                                       |   |
| Chloramphenicol                 | 30                                       |   |
| Makrolide                       | 28                                       |   |
| Tetracycline                    | 40                                       |   |
| Trimethoprim & Sulfonamide      | 22                                       |   |
| β-Laktame                       | 62                                       |   |
| Methicillin                     | 1                                        |   |
| Multidrug-Transporter           | 10                                       |   |
| Quaternäre Ammoniumverbindungen | 9                                        |   |
| Summe                           | 248                                      |   |

Tabelle 2: Zahl der Resistenzgene, die für das Design spezifischer Oligonikleotide ausgewählt wurden.

Zusätzlich wurden sechs weitere Gene. die spezifisch für Plasmide der Inkompatibilitäsgruppen (Inc) IncP, -Q, -W, -N, -A/C, und -F sind, für das Design von Oligonukleotiden ausgewählt. Zu den Inc-Gruppen P, Q, W, N, A/C gehören selbsttransmissible Plasmide, während zur IncF-Gruppe Plasmide aus Enterobakterien (Darmbakterien; z.B. Escherichia coli) gehören. Des Weiteren wurden die Gene gfp (Gen aus der Qualle Aequorea victoria, das für ein grün fluoreszierendes Protein kodiert) und luc (Gen aus dem Leuchtkäfer Photuris pennsylvanica, das für die Luziferase kodiert), die nicht in Kläranlagenbakterien vorkommen sollten als negative Kontrollen ausgewählt.

## 5. Entwicklung von Resistenzgen-spezifischen Oligonukleotiden

Mit Hilfe des Programms Oligo Designer (Burkhard Linke, BRF, Universität Bielefeld) wurden Gen-spezifische Oligonukleotide für insgesamt 248 Resistenzgene und acht Kontrollgene berechnet. Die eingestellten Parameter sind in Tabelle 3 dargestellt:

| •                                |                                                |
|----------------------------------|------------------------------------------------|
| Länge                            | 70mere                                         |
| Schmelztemperatur                | Minimum: 75 °C; Optimum: 78 °C; Maximum: 81 °C |
| Salzkonzentration                | 0,1 M                                          |
| Stemsize <sup>1</sup>            | Maximal 8 Basen                                |
| Standard QGramMatch <sup>2</sup> | Q=8/14-18 Nukleotide/ 70 %                     |
| Ausschluss <sup>3</sup>          | Jeweils 50 Basen vom 5'- und 3'-Ende           |

Tabelle 3: Definierte Parameter für das Design der Resistenzgen-spezifischen Oligonukleotide durch das Programm Oligo Designer.

<sup>3</sup> Ausschuss – notwendig für das Design von spezifischen Primern

<sup>&</sup>lt;sup>1</sup> Stemsize – gibt die maximale Zahl der Basenpaarungen in einer Sekundärstruktur innerhalb eines Oligos an <sup>2</sup> Standard QGramMatch – Überprüfung der Einzigartigkeit der Oligos. Scan nach 8 bp langem Bereich von Identität zu anderen Genen und dessen Ausweitung auf 14-18 bp oder Scan nach 70 % Homologie über die gesamte Länge des Oligos.

Aufgrund einer zu hohen Ähnlichkeit mancher Gene zueinander konnten keine spezifischen Oligonukleotide vorgeschlagen werden. Deswegen wurden insgesamt 79 Gene zu 35 Gruppen zusammengefasst und für diese Gruppen konnten spezifische Oligonukleotide generiert werden. Insgesamt wurden 232 spezifische Oligonukleotide entworfen (197 Resistenzgene, 35 Kontrollen) und generiert (Operon Biotechnologies, Köln, Deutschland). Die Abbildung 5 gibt einen Überblick über die Verteilung der Oligonukleotide auf die Schmelztemperaturen. Die Oligonukleotide und deren Spezifikationen sind in Tabelle A1 im Anhang zu sehen.



Abbildung 5: Zahl der Oligonukleotide mit bestimmten Schmelztemperaturen. Die optimale Schmelztemperatur wurde auf 78 °C gesetzt, die minimale auf 75 °C und die maximale auf 81 °C. Der Bereich zwischen den roten Strichen stellt die Zahl der Oligonukleotide dar, die in den oben angegebenen Temperaturbereich passen.

#### 6. Primerentwicklung zur Herstellung der Hybridisierungssonden

Zur Herstellung der Sonden, die gegen das Resistenzarray hybridisiert werden, werden Primer benötigt. Diese erlauben die Amplifikation von ausgewählten Bereichen (die durch die Oligonukleotide repräsentiert werden) der Resistenzgene, bei deren gleichzeitiger Markierung. Die Primer sind durch das Programm Primer3 (Rozen & Skaletsky, 2000) generiert worden. Die verwendeten Einstellungen sind in Tabelle 4 dargestellt. Tabelle 4: Definierte Parameter für das Design der Primer für die Amplifikation von ausgewählten Resistenzgenbereichen, die durch die Oligonukleotide repräsentiert werden.

| Länge                                | Minimum: 18 Basen          |
|--------------------------------------|----------------------------|
|                                      | Optimum: 20 Basen          |
|                                      | Maximum: 23 Basen          |
| Schmelztemperatur                    | Minimum: 55 °C             |
|                                      | Optimum: 60 °C             |
|                                      | Maximum: 63 °C             |
| Amplikon-Länge                       | Zwischen 130 und 200 Basen |
| Minimaler Abstand zum Oligonukleotid | Zwischen 0 und 10 Basen    |

Insgesamt wurden 200 Primerpaare generiert, mit deren Hilfe Resistenzgen-spezifische Amplikons erzeugt werden können (siehe Tabelle A2 im Anhang). Die theoretischen Längen der Amplikons und die Häufigkeit der Längen sind in Abbildung 6 dargestellt.



Abbildung 6: Zahl der Amplikons bestimmter Längen, die bei der Sondenherstellung entstehen.

# 7. Isolierung von Gesamt-Plasmid-DNAs aus Belebtschlammbakterien zur Erzeugung von Resistenzgen-spezifischen Amplikons mittels PCR

Zum Nachweis von Plasmid-lokalisierten Resistenzgenen in Bakterien einer kommunalen Abwasserkläranlage wird die Gesamt-Plasmid-DNA aus diesem Habitat benötigt. Zum Zweck der Plasmidisolierung wurden im August und September 2006 Proben des Belebtschlamms der Kläranlage Bielefeld-Heepen entnommen. Die Proben wurden auf Festagarmedien ausgebracht, die unterschiedliche Antibiotika enthielten (siehe Tabelle 5).

| Antibiotikum    | Konzentration [µg / ml] |
|-----------------|-------------------------|
|                 |                         |
| Gentamicin      | 15                      |
| Kanamycin       | 50                      |
| Spectinomycin   | 100                     |
| Streptomycin    | 100                     |
| Ampicillin      | 100                     |
| Cefotaxim       | 1                       |
| Cefuroxim       | 15                      |
| Chloramphenicol | 25                      |
| Ciprfloxacin    | 1                       |
| Norfloxacin     | 1                       |
| Erythromycin    | 200                     |
| Rifampicin      | 30                      |
| Tetracyclin     | 5                       |
|                 |                         |

Tabelle 5: Antibiotika und deren Konzentrationen, die zur Selektion von Belebtschlammbakterien eingesetzt wurden.

Das Medium enthielt zusätzlich Cycloheximid (75  $\mu$ g / ml), um das Pilzwachstum zu minimieren.

Nach der Inkubation der Proben (36h bei 30 °C) wurden die gewachsenen Bakterien abgeschwemmt und einer alkalischen Lyse mit anschließender Anionentauscher-Chromatographie (Macherey-Nagel, Düren, Deutschland) unterzogen (siehe Abbildung 7A). Diese Gesamt-Plasmid-DNA wurde im nächsten Schritt mittels einer Cäsiumchlorid Dichtegradientenzentrifugation von der chromosomalen DNA getrennt (siehe Abbildung 7B). Es ist deutlich zu erkennen, dass der chromosomale Anteil der DNA (der weiße Schmier in Abbildung 7A) nach der Dichtegradientenzentrifugation von der Plasmid-DNA (einzelne Banden in Abbildung 7B) getrennt wurde.



Cet control 50 to Marker



Abbildung 7: Die Überprüfung der Qualität von Gesamt-Plasmid-DNAs nach Isolierung mittels alkalischer Lyse (A) und nach einem weiteren Aufreinigungsschritt mittels Cäsiumchlorid-Dichtegradientenzentrifugation (B) in einem Agarosegel.

В

Abkürzungen: Cef – Cefuroxim; Cm – Chloramphenicol; Em – Erythromycin; Nor – Norfloxacin; Sp – Spectinomycin; Tc – Tetracyclin.

Die Konzentrationen der isolierten Gesamt-Plasmid-DNAs können der Tabelle 6 entnommen werden.

| DNAs.                         |                          |
|-------------------------------|--------------------------|
| Primärselektion der           | <b>DNA-Konzentration</b> |
| Bakterien auf                 | [ng / µl]                |
|                               |                          |
| Ampicillin                    | 47,15                    |
| Cefotaxim                     | 72,07                    |
| Cefuroxim                     | 78,86                    |
| Ciprofloxacin                 | 128,61                   |
| Erythromycin                  | 41,83                    |
| Erythromycin + Rifampicin *   | 41,21                    |
| Gentamicin                    | 16,37                    |
| Kanamycin                     | 119,40                   |
| Norfloxacin                   | 16,51                    |
| Spectinomycin                 | 101,49                   |
| Streptomycin                  | 116,78                   |
| Tetracyclin                   | 22,64                    |
| * Die auf Erythromycin bzw. F | Rifampicin gewachsenen   |

Tabelle 6: Konzentration der isolierten Gesamt-Plasmid-DNAs

\* Die auf Erythromycin bzw. Rifampicin gewachsenen Kulturen wurden augrund der geringen Zahl wachsender Bakterienkolonien für die Isolierung der Gesamt-Plasmid-DNA vereinigt.

Anschließend wurden jeweils 20 $\mu$ l der Gesamt-Plasmid-DNAs zu einer Master-Gesamt-Plasmid-DNA vereinigt (Endkonzentration: 79,87 ng /  $\mu$ l).

## 8. Nachweis der in Belebtschlammbakterien vorhandenen, Plasmid-lokalisierten Resistenzgene mittels PCR

Zur Überprüfung des Vorkommens von Resistenzgenen auf Plasmiden der Belebtschlammbakterien und der Funktionalität und Spezifität der Resistenzgen-spezifischen Primer wurden PCRs durchgeführt. Als *Template* diente dabei eine Mischung aus Gesamt-Plasmid-DNAs, die aus Belebtschlammbakterien isoliert wurden, die wiederum mit den Antibiotika Ampicillin, Cefotaxim, Cefuroxim, Chloramphenicol, Ciprofloxacin, Erythromycin, Erythromycin / Rifampicin, Gentamicin, Kanamycin, Norfloxacin, Streptomycin, Spectinomycin und Tetracyclin selektioniert wurden (Master-Gesamt-Plasmid-DNA aus Punkt 5.).

Als Ergebnis der durchgeführten 200 PCR-Reaktionen sind 146 positive Signale mit der zu erwartenden Größe festzuhalten (siehe Tabelle A3). Dabei handelt es sich um 24 Aminoglykosid-, 31 β-Laktam-, 17 Chloramphenicol-, vier Fluoroquinolon-, 14 Makrolid-, ein Rifampicin-, 21 Tetracyclin-, 14 Trimethoprim und Sulfonamid-Resistenzgene, fünf Resistenzgene gegen quaternäre Ammoniumverbindungen, neun Gene für Multidrug-Efflux Transporter, fünf Plasmid-spezifische Gene sowie um ein Tetracyclin Repressorgen. Das Ergebnis einer solchen PCR ist exemplarisch in Abbildung 8 dargestellt.



Abbildung 8: Nachweis von Resistenzgenen in Belebtschlammbakterien mittels PCR. Dargestellt ist eine Auswahl von Resistenzgen-spezifischen PCR-Produkten. Die entsprechenden Namen der Gene sind über den Spuren angegeben.

Zur Verifizierung der Echtheit der Amplikons wurden 48 ausgewählte PCR-Produkte sequenziert. Anschließend wurden die erhaltenen Sequenzen mit Sequenzen aus Datenbanken

verglichen. Das Ergebnis dieser Untersuchung war, dass die Sequenzen der PCR-Produkte entweder 100 %ig mit denen der Zielgene übereinstimmten oder sehr hohe Ähnlichkeit mit einem sehr eng verwandten Resistenzgen zeigten.

#### 9. Hybridisierung von Multiplex-Sonden gegen Resistenzgen-spezifische Amplikons

Im Wesentlichen gibt es zwei Möglichkeiten, um unter Einsatz von Aminoallyl-dUTP eine Sonde für eine Hybridisierung herzustellen. Die Markierung der DNA kann mit der Random Labeling Methode oder mittels PCR durchgeführt werden. Bei der ersten Methode wird die zu markierende DNA durch oft schneidende Restriktionsenzyme verdaut, so dass kurze DNA Fragmente entstehen. Anschließend wird die DNA durch Hitzeeinwirkung denaturiert und unter Einsatz des Klenow-Enzyms, eines Hexanukleotid-Mixes und des dNTP-Mixes (Desoxynukleotide und das Aminoallyl-dUTP) wieder zum Doppelstrang ergänzt. Der Nachteil dieser Methode ist, dass es zur Markierung der gesamten DNA und nicht zu einer spezifischen Markierung der Resistenzgene kommt. Es ist zu befürchten, dass unterrepräsentierte Sequenzen in der Hybridisierung nicht detektiert werden. Aufgrund dieses Nachteils wird die PCR als Methode der Sondenherstellung ausgewählt. Hierbei werden unter Einsatz von Resistenzgen-spezifischen Primern in mehreren Reaktionszyklen die Sondenmoleküle exponentiell vervielfältigt, wodurch auch Resistenzgene geringer Kopienzahl nachweisbar sein sollten. Mit dieser Methode ist es auch möglich, mehrere Resistenzgen-spezifische Amplikons in einem PCR-Ansatz (auch als Multiplex-PCR bezeichnet) zu erzeugen. Um festzustellen, ob bei dieser Variante auch alle möglichen Resistenzgene, die in der Probe vorhanden sind, als Target für eine Markierung dienen, werden in vier unabhängigen Multiplex PCR-Ansätzen jeweils 25, 50, 75 bzw. 100 Resistenzgen-spezifische Primerpaare vereinigt. Hierfür werden DIG-markierte Nukleotide zur Markierung der PCR-Amplikons verwendet. Das Ergebnis sind vier Sonden, die gegen die Resistenzgen-spezifische Amplikons (siehe Punkt 6.) hybridisiert werden. Bei dieser Methode der Hybridisierung, die als Southern-Hybridisierung bezeichnet wird, werden die PCR-Produkte elektrophoresisch in einem Agarosegel ihrer Größe nach getrennt, denaturiert und durch das Anlegen eines Vakuums auf eine Nylonmembran übertragen und immobilisiert. Anschließend werden die zuvor hergestellten Sonden mit den immobilisierten PCR-Produkten auf der Nylonmembran hybridisiert. Gebildete Hybridmoleküle können in einer Farbreaktion nachgewiesen werden. Durch die DIG-Markierung der DNA soll die maximale Zahl der Primerpaare ermittelt werden, die in einer Multiplex-PCR zwecks Sondenherstellung zum Einsatz kommen können. Ein Beispiel einer solchen Hybridisierung ist in Abbildung 9 zu sehen.



Abbildung 9: *Southern*-Hybridisierung zur Überprüfung der Effizienz der Markierung einer Sonde mittels Multiplex-PCR (exemplarische Darstellung).

Das obere Bild zeigt die PCR-Produkte (siehe Punkt 8), die, in einem Agarosegel ihrer Größe nach aufgetrennt, auf eine Nitrozellulose-Membran übertragen und gegen eine Multiplex-Sonde hybridisiert wurden. Das Ergebnis der Hybridisierung ist im unteren Bild zu sehen.

Die Southern-Hybridisierungen (mit Sonden, die in den Multiplex PCR-Ansätzen hergestellt wurden) konnten 72-84 % der angebotenen Resistenzgen-spezifischen Amplikons (siehe Punkt 8.) durch ein Hydridisierungssignal nachgewiesen werden. Das Fehlen der restlichen Signale könnte mit den unterschiedlichen Konzentrationen der PCR-Amplikons auf der Nylonmembran zusammenhängen. Diese Fehlerquelle würde aber bei einer Hybridisierung gegen das Resistenz-Microarray wegfallen, da immer die gleiche Menge an DNA in Form der Resistenzgen-spezifischen Oligonukleotide gespottet und somit auch als *Template* angeboten wird. Aufgrund des hohen Anteils von nachgewiesenen Resistenzgen-spezifischen Sequenzen in einem DNA-Gemisch wird die hier beschriebene Methode auch zur Herstellung von Sonden für die Hybridisierung gegen das Microarray eingesetzt.

## 10. Layout und Fabrikation des Resistenz-Microarrays sowie Hybridisierung und Datenerfassung durch Fluoreszenzmesseung

Zur Herstellung des Resistenz-Microarrays wurde der Nexterion Slide E MPX (Schott AG, Mainz, Deutschland) verwendet. Dieser Slide besteht aus 16 Grids (helle Kästchen in Abbildung 10A). Durch das Aufkleben einer *Superstructure* auf den Slide wird eine räumliche Trennung der einzelnen Grids voneinander erreicht. Dies ermöglicht theoretisch die gleichzeitige Verwendung von 16 unterschiedlichen Sonden, da jedes Grid für sich alleine behandelt werden kann. Aus technischen Gründen können jedoch nur 14 von den 16 Grids beladen werden. In jedem Grid wurden die Resistenzgen-spezifischen Oligonukleotide in

zweifacher Kopie gespottet (siehe Abbildung 10B). Zum Spotten wird die Maschine Microgrid der Firma BioRobotics eingesetzt. Gespottet wird mit zwei Nadeln. Dabei wird eine Flüssigkeit mit einem darin gelösten Oligonukleotid in ein Reservoire aufgenommen und schrittweise an vorher festgelegten Positionen innerhalb eines Grids freigesetzt. Nach dem Aufbringen des Oligonukleotids auf das gesamte Array (alle 14 Grids), werden die Nadeln mit speziellen Puffern gewaschen und sind wieder zur Aufnahme einer Lösung, die das zweite Oligonukleotid enthält, bereit. Die Oligonukleotide binden dabei mit der angehängten Aminogruppe an die Epoxygruppen der aktivierten Glasoberfläche und eine stabile, kovalente Bindung entsteht.



Abbildung 10: Der verwendete Glasträger (Nexterion Slide E MPX; Schott AG, Mainz, Deutschland) zur Immobilisierung der Resistenzgen-spezifischen Oligonukleotide (A). Die Zahlen geben die jeweiligen Abstände in Millimeter an. Der Slide besteht aus 16 Grids. Das Layout des Resistenz-Microarrays (B). Jedes Oligonukleotid wurde zwei mal pro Grid gespottet (Copy 1 und Copy 2).

Die Sonde wird in einem 2-Stufen-Verfahren herstellt. Im ersten Schritt erfolgt der Einbau von modifizierten Nukleotiden (aa-dUTP – Aminoallyl-dUTP) in das *Template* (z.B. mittels PCR). Im zweiten Schritt wird ein Fabstoff (z.B. Cy3) an die eingebauten modifizierten Nukleotide angehängt (siehe Abbildung 11).



Einbau modifizierter Nukleotide (z.B. aa-dUTP) in einer PCR oder mittels *Random Labeling* 

Kopplung der Fluoreszenzfarbstoffe (z.B. Cy3)

Abbildung 11: Sondenherstellung durch indirekte Markierung des DNA-Fragments.



Abbildung 12: Datenerfassung durch Fluoreszenzmessung.

Nach erfolgter Hybridisierung werden die Signale im Tecan LS Reloaded Microarray Scanner (Tecan Deutschland GmbH, Crailsheim, Deutschland) ausgelesen. Dabei tastet ein Laser (Wellenlänge 532 nm) die Slide-Oberfläche ab. Trifft dieser nun auf einen Spot, an welchen die markierte Sonde gebunden hat, dann wird ein Lichtsignal emittiert. Dieses Lichtsignal wird durch eine Kamera detektiert und dient der Datenanalyse (siehe Abbildung 12).

## 11. Effizienztest des Resistenz-Microarrays

Zur Überprüfung der Verlässlichkeit des Resistenzarrays wurden Sonden mit bekanntem Resistenzgen-Gehalt hergestellt. Als *Template* dienten die Plasmide pB3, pB4, pB8, pB10, pTB11, pRSB101, pRSB107 und pRSB111, die jeweils einzeln mittels *Random-Labeling* (Partieller Verdau der Plasmid-DNA, Denaturierung, Markierung der DNA durch Einbau von aa-dUTP durch das Klenow-Enzym während der Synthese des komplementären DNA-Stranges) markiert wurden. Zusätzlich wurden zwei weitere Sonden in Multiplex-PCRs hergestellt. Eine Sonde wurde mit einem Mix aus bereits sequenzierten Plasmiden (pB3, pB4, pB8, pB10, pTB11, pRSB101, pRSB105, pRSB107, pRSB111, pBGN2) als *Template* und Primern, die spezifisch für die auf den Plasmiden lokalisierten Resistenzgenen sind, synthetisiert (siehe Tabelle 7). Die nächste Sonde wurde mit der Master-Gesamt-Plasmid-DNA (siehe Kapitel 5.) als *Template* mit Fluoroquinolon-Resistenzgen-spezifischen Primern hergestellt. Für die Sonden 13 und 14, die mittels PCR hergestellt wurden, wurden die Plasmide pAG308 (*gfp*) und pB3 (*trfA*) als *Template* verwendet. Dabei wurden die Gene *gfp* und *trfA* (als negative und positive Kontrolle gedacht) markiert.

Zwei Beispiele der Hybridisierung sollen nun näher vorgestellt werden. Ein komplexes Hybridisierungsergebnis der Kontrollhybridisierung ist in Abbildung 13 dargestellt. Es handelt sich um die Hybridisierung des Microarrays mit einer Sonde, die in einer Multiplex-PCR hergestellt wurde. Dabei wurde ein Gemisch aus sequenzierten Plasmiden (pB3, pB4, pB8, pB10, pTB11, pRSB101, pRSB105, pRSB107, pRSB111, pBGN2) als *Template* verwendet und Primer, die spezifisch für die auf den Plasmiden lokalisierten Resistenzgenen sind. Die dabei markierten Resistenzgene sind in Tabelle 7 dargestellt.

Tabelle 7: Resistenzgene, für die spezifische Primer in einer Multiplex-PCR eingesetzt wurden, um eine Sonde für eine Kontrollhybridisierung herzustellen.

|                      | Plasmidname                                    |                                |                |                                 |                          |                                                                           |                    |                                                          |        |       |
|----------------------|------------------------------------------------|--------------------------------|----------------|---------------------------------|--------------------------|---------------------------------------------------------------------------|--------------------|----------------------------------------------------------|--------|-------|
|                      | pB3                                            | pB4                            | pB8 pB10 pTB11 |                                 | pRSB101                  | pRSB105                                                                   | pRSB107            | pRSB111                                                  | pGNB2  |       |
| Resistenz-<br>gene * | bla <sub>NPS-2</sub> ,<br>cmlA1,<br>sulI, tetA | bla <sub>NPS-1</sub> ,<br>mexD | oxa2,<br>qacF  | strA,<br>strB,<br>tetA,<br>trfA | aacA4,<br>aadA1,<br>aphA | aadA2,<br>bla <sub>TLA-2</sub> ,<br>dhfrI,<br>mph(A),<br>orf11,<br>aacFA1 | dfrB2,<br>mel, mph | aph,<br>bla <sub>TEM1</sub> ,<br>catA,<br>sulII,<br>tetA | mph(B) | qnrS2 |

\* Manche Resistenzgene kommen auf mehreren der angegebenen Plasmide vor und wurden in der Tabelle nicht mehrfach aufgeführt.



Abbildung 13: Nachweis von Resistenzgenen in einem Gemisch aus den bereits sequenzierten Plasmiden pB3, pB4, pB8, pB10, pTB11, pRSB101, pRSB105, pRSB107, pRSB111, pGNB2. Die Sonde wurde in einer Multiplex-PCR hergestellt mit einem Plasmid-Gemisch (siehe oben) als *Template*. A) Resistenzgene, die tatsächlich auf den sequenzierten Plasmiden vorkommen und detektiert werden konnten (grüne Kästchen). B) Resistenzgene, die nicht auf den sequenzierten Plasmiden vorkommen, aber in der Hybridisierung ein (wenn auch meistens ein sehr schwaches) Signal liefern (rote Kästchen).

Die Erfassung der Hybridisierungssignale erfolgt bei voller Laserstärke der Wellenlänge 532 nm und einer Photomultiplier Tube (Lichtverstärker)-Einstellung von 138 (ein Maß für die Verstärkung von Signalen des einfallenden Lichts) im Tecan LS Reloaded Microarray Scanner (Tecan Deutschland GmbH, Crailsheim, Deutschland) und liefert dimensionslose Werte für Signalintensität. Die visuelle Verarbeitung der Daten wurde mit dem Programm ImaGene (Version 6.0.1; BioDiscovery, Inc., El Segundo, CA, U.S.A.) durchgeführt.

Neben positiven Signalen (Abbildung 13A, Signale in grünen Kästchen) sind auch Signale zu detektieren, die nicht vorhanden sein sollten (Abbildung 13B, Signale in roten Kästchen). Obwohl alle in der Sonde vorhandenen Gene als Hybridisierungssignal auftauchen, so variiert die Intensität dieser Signale stark (zwischen 65535 und 2227). Dies ist wahrscheinlich auf die Methode der Sondenherstellung (Multiplex-PCR) zurückzuführen. So spielen z.B. die Kopienzahl des *Templates* und die Schmelztemperaturen der Primer eine entscheidende Rolle für die Bildung von Amplikons. Deswegen ist es nicht möglich, in einer Multiplex-PCR optimale Bedingungen für die Bildung aller möglichen PCR-Produkte einzustellen. Die zusätzlichen Signale, die nach der Hybridisierung der Sonde mit dem Microarray detektiert wurden, weisen fast ohne Ausnahme niedrige Intensitäten auf. Die Ausnahme stellt ein Signal dar, das für das Gen *cmlB* spezifisch ist. Die Signalstärke für das *cmlB*-Gen beträgt 48535 (Kopie 1) und 41806 (Kopie 2). Die starke Hybridisierung gegen dieses Oligonukleotid ist mit dem Vorkommen des sehr ähnlichen Gens *cmlA1* auf dem Plasmid pB3 zu erklären. Die

beiden Oligonukleotide, die *cmlA1* bzw. *cmlB* repräsentieren, unterscheiden sich nur in sechs Positionen. Die Hybridisierung gegen dieses Oligonukleotid könnte möglicherweise durch stringentere Hybridisierungsbedingungen geschwächt oder gar unterbunden werden.

Das zweite Beispiel zeigt die Hybridisierung des Microarrays gegen eine Sonde, die mit der Master-Gesamt-Plasmid-DNA als *Template* und mit Fluoroquinolon-Resistenzgen-spezifischen Primern in einer Multiplex-PCR hergestellt wurde (siehe Abbildung 14).



Abbildung 14: Nachweis von Fluoroquinolon-Resistenzgenen in der Master-Gesamt-Plasmid-DNA aus Belebtschlammbakterien. Die Nummern in Klammern geben die Accession No. für die Resistenzgene an, die für das Design von spezifischen Oligonukleotiden eingesetzt wurden. Die Punkte in dem Grid stellen Hybridisierungssignale dar. Diese sind spezifisch für die Fluoroquinolon-Resistenzgene *qnr*, *qnrA3*, *qnrB1*, *qnrB4* und *qnrS2*.

Wie die Abbildung 14 zeigt, hybridisierte die Sonde ausschließlich gegen Oligonukleotide, die Fluoroquinolon-Resistenzgene repräsentieren. Die Punkte auf der rechten Seite des Grids repräsentieren jeweils die zweite Kopie der Oligonukleotide. Somit können Resistenzgene spezifisch in einem DNA-Gemisch nachgewiesen werden.

#### 12. Ausblick

Erste Hybridisierungsversuche haben gezeigt, dass sich das Resistenz-Microarray zum Nachweis von Resistenzgenen in einem DNA-Gemisch eignet aber die Spezifität der Hybridisierung müsste verbessert werden. Weitere Anwendungsmöglichkeiten des Microarrays sind:

 die Untersuchung weiterer Kompartimente der Kläranlage auf das Vorkommen von Resistenzgenen. Zu diesem Zweck liegen z.B. die Gesamt-Plasmid-DNAs aus Vorfluterbakterien bereits vor.  die Untersuchung von Kläranlagen mit Zuläufen unterschiedlicher Herkunft. So könnten die Kläranlagen auf das Vorkommen von Resistenzgenen untersucht werden, i) die das Abwasser sowohl aus Krankenhäusern als auch aus privaten Haushalten und der Industrie erhalten und auch solche, ii) die das Abwasser nur aus einer oder iii) aus zwei der genannten Quellen beziehen.

## 13. Literatur

Baquero, F. & Blàzquez, J. (1997). Evolution of antibiotic resistance. *Trends in Ecology & Evolution* 12, 482-487.

**Bennett, P. M. (1999).** Integrons and gene cassettes: a genetic construction kit for bacteria. *Journal of Antimicrobial Chemotherapy* **43**, 1-4.

Bennett, P. M. (2004). Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. *Methods Mol Biol* 266, 71-113.

Blàzquez, J., Navas, A., Gonzalo, P., Martinez, J. L. & Baquero, F. (1996). Spread and evolution of natural plasmids harboring transposon Tn5. *Fems Microbiology Ecology* **19**, 63-71.

**Bönemann, G., Stiens, M., Pühler, A. & Schlüter, A. (2006).** Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, *qnrS2*, isolated from the bacterial community of a wastewater treatment plant. *Antimicrob Agents Chemother* **50**, 3075-3080.

Collis, C. M. & Hall, R. M. (1995). Expression of antibiotic resistance genes in the integrated cassettes of integrons. *Antimicrob Agents Chemother* **39**, 155-162.

**Davies, J. (1994).** Inactivation of antibiotics and the dissemination of resistance genes. *Science* **264**, 375-382.

Davies, J. & Wright, G. D. (1997). Bacterial resistance to aminoglycoside antibiotics. *Trends Microbiol* 5, 234-240.

**Davison, J. (1999).** Genetic exchange between bacteria in the environment. *Plasmid* **42**, 73-91.

Dröge, M., Pühler, A. & Selbitschka, W. (1998). Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. *J Biotechnol* 64, 75-90.

**Dröge, M., Pühler, A. & Selbitschka, W. (1999).** Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. *Biology and Fertility of Soils* **29**, 221-245.

**Dröge, M., Pühler, A. & Selbitschka, W. (2000).** Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. *Mol Gen Genet* **263**, 471-482.

Feuerpfeil, I., Lopez-Pila, J., Schmidt, R., Schneider, E. & Szewzyk, R. (1999). Antibiotikaresistente Bakterien und Antibiotika in der Umwelt. *Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz* **42**, 37-50.

Fontaine, T. D., 3rd & Hoadley, A. W. (1976). Transferable drug resistance associated with coliforms isolated from hospital and domestic sewage. *Health Lab Sci* 13, 238-245.

Geisenberger, O., Ammendola, A., Christensen, B. B., Molin, S., Schleifer, K. H. & Eberl, L. (1999). Monitoring the conjugal transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. *Fems Microbiology Letters* **174**, 9-17.

Glynn, M. K., Bopp, C., Dewitt, W., Dabney, P., Mokhtar, M. & Angulo, F. J. (1998). Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. *N Engl J Med* **338**, 1333-1338.

Gomez-Lus, R. (1998). Evolution of bacterial resistance to antibiotics during the last three decades. *Int Microbiol* 1, 279-284.

Guardabassi, L., Dalsgaard, A. & Olsen, J. E. (1999). Phenotypic characterization and antibiotic resistance of Acinetobacter spp. isolated from aquatic sources. *J Appl Microbiol* 87, 659-667.

Hall, R. M. & Collis, C. M. (1995). Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. *Mol Microbiol* 15, 593-600.

Hartmann, A., Alder, A. C., Koller, T. & Widmer, R. M. (1998). Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. *Environmental Toxicology and Chemistry* 17, 377-382.

Hartmann, A., Golet, E. M., Gartiser, S., Alder, A. C., Koller, T. & Widmer, R. M. (1999). Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. *Arch Environ Contam Toxicol* 36, 115-119.

Heuer, H., Szczepanowski, R., Schneiker, S., Pühler, A., Top, E. M. & Schlüter, A. (2004). The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1β group without any accessory genes. *Microbiology* **150**, 3591-3599.

Heuer, H., Krogerrecklenfort, E., Wellington, E. M. H., Egan, S., van Elsas, J. D., van Overbeek, L., Collard, J. M., Guillaume, G., Karagouni, A. D., Nikolakopoulou, T. L. & Smalla, K. (2002). Gentamicin resistance genes in environmental bacteria: prevalence and transfer. *Fems Microbiology Ecology* **42**, 289-302.

Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. (1998). Multiple sequence alignment with Clustal X. *Trends Biochem Sci* 23, 403-405.

**Kümmerer, K. (2001).** Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources--a review. *Chemosphere* **45**, 957-969.

Kümmerer, K., Al-Ahmad, A. & Mersch-Sundermann, V. (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. *Chemosphere* **40**, 701-710.

Livermore, D. M. (2000). Epidemiology of antibiotic resistance. *Intensive Care Med* 26 Suppl 1, S14-21.

Mach, P. A. & Grimes, D. J. (1982). R-plasmid transfer in a wastewater treatment plant. *Appl Environ Microbiol* 44, 1395-1403.

Marcinek, H., Wirth, R., Muscholl-Silberhorn, A. & Gauer, M. (1998). *Enterococcus faecalis* gene transfer under natural conditions in municipal sewage water treatment plants. *Appl Environ Microbiol* **64**, 626-632.

Mazel, D. & Davies, J. (1999). Antibiotic resistance in microbes. *Cell Mol Life Sci* 56, 742-754.

Nüsslein, K., Maris, D., Timmis, K. & Dwyer, D. F. (1992). Expression and transfer of engineered catabolic pathways harbored by *Pseudomonas* spp. introduced into activated sludge microcosms. *Appl Environ Microbiol* **58**, 3380-3386.

Olsen, J. E. (1999). Antibiotic resistance: genetic mechanisms and mobility. *Acta Vet Scand Suppl* 92, 15-22.

**Osborn, A. M. & Boltner, D. (2002).** When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. *Plasmid* **48**, 202-212.

**Page, R. D. M. (1996).** TreeView: An application to display phylogenetic trees on personal computers. *Computer Applications in the Biosciences* **12**, 357-358.

Rowe-Magnus, D. A. & Mazel, D. (1999). Resistance gene capture. *Curr Opin Microbiol* 2, 483-488.

Rozen, S. & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. *Methods Mol Biol* 132, 365-386.

Schlüter, A., Szczepanowski, R., Kurz, N., Schneiker, S., Krahn, I. & Pühler, A. (2007). Erythromycin resistance plasmid pRSB105 isolated from a sewage treatment plant harbours a new macrolide resistance determinant, an integron-containing Tn402-like element and a large region of unknown function. *Appl Environ Microbiol* **73**, 1952-1960.

Schlüter, A., Heuer, H., Szczepanowski, R., Forney, L. J., Thomas, C. M., Pühler, A. & Top, E. M. (2003). The 64 508 bp IncP-1 $\beta$  antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1 $\beta$  group. *Microbiology* **149**, 3139-3153.

Schlüter, A., Heuer, H., Szczepanowski, R., Poler, S. M., Schneiker, S., Pühler, A. & Top, E. M. (2005). Plasmid pB8 is closely related to the prototype IncP-1β plasmid R751 but transfers poorly to *Escherichia coli* and carries a new transposon encoding a small multidrug resistance efflux protein. *Plasmid* 54, 135-148.

Seveno, N. A., Kallifidas, D., Smalla, K., van Elsas, J. D., Collard, J. M., Karagouni, A. D. & Wellington, E. M. H. (2002). Occurrence and reservoirs of antibiotic resistance genes in the environment. *Reviews in Medical Microbiology* **13**, 15-27.

Smalla, K. & Sobecky, P. A. (2002). The prevalence and diversity of mobile genetic elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. *Fems Microbiology Ecology* **42**, 165-175.

Snaidr, J., Amann, R., Huber, I., Ludwig, W. & Schleifer, K. H. (1997). Phylogenetic analysis and *in situ* identification of bacteria in activated sludge. *Appl Environ Microbiol* 63, 2884-2896.

Sundström, L. (1998). The potential of integrons and connected programmed rearrangements for mediating horizontal gene transfer. *APMIS Suppl* 84, 37-42.

**Szczepanowski, R., Krahn, I., Bohn, N., Pühler, A. & Schlüter, A. (2007).** Novel macrolide resistance module carried by the IncP-1β resistance plasmid pRSB111, isolated from a wastewater treatment plant. *Antimicrob Agents Chemother* **51**, 673-678.

Szczepanowski, R., Krahn, I., Linke, B., Goesmann, A., Pühler, A. & Schlüter, A. (2004). Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. *Microbiology* **150**, 3613-3630.

Szczepanowski, R., Braun, S., Riedel, V., Schneiker, S., Krahn, I., Pühler, A. & Schlüter, A. (2005). The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. *Microbiology* **151**, 1095-1111.

Tauch, A., Schlüter, A., Bischoff, N., Goesmann, A., Meyer, F. & Pühler, A. (2003). The 79,370-bp conjugative plasmid pB4 consists of an IncP-1 $\beta$  backbone loaded with a chromate resistance transposon, the *strA-strB* streptomycin resistance gene pair, the oxacillinase gene *bla*<sub>NPS-1</sub>, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. *Mol Genet Genomics* **268**, 570-584.

**Tennstedt, T., Szczepanowski, R., Braun, S., Pühler, A. & Schlüter, A. (2003).** Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. *Fems Microbiology Ecology* **45**, 239-252.

Tennstedt, T., Szczepanowski, R., Krahn, I., Pühler, A. & Schlüter, A. (2005). Sequence of the 68,869 bp IncP-1 $\alpha$  plasmid pTB11 from a waste-water treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements. *Plasmid* 53, 218-238.

**Top, E., Desmet, I., Verstraete, W., Dijkmans, R. & Mergeay, M. (1994).** Exogenous isolation of mobilizing plasmids from polluted soils and sludges. *Applied and Environmental Microbiology* **60**, 831-839.

**Tschäpe, H. (1994).** The spread of plasmids as a function of bacterial adaptability. *Fems Microbiology Ecology* **15**, 23-31.

van Overbeek, L. S., Wellington, E. M. H., Egan, S., Smalla, K., Heuer, H., Collard, J. M., Guillaume, G., Karagouni, A. D., Nikolakopoulou, T. L. & van Elsas, J. D. (2002). Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. *Fems Microbiology Ecology* **42**, 277-288.

Witte, W. (1998). Medical consequences of antibiotic use in agriculture. *Science* 279, 996-997.

## 14. Anhang

## 14.1 Abbildungen



aacA4, aadA1, aphA

Abbildung A1: Ausgewählte Resistenzgene der IncP-1 Plasmide aus Bakterien kommunaler Abwasserkläranlagen. Die Resistenzgene, die für das Design von Oligos für das Resistenzarray ausgewählt wurden, sind über bzw. unter dem jeweiligen Plasmid, auf welchem sie sich befinden, angegeben.



Abbildung A2: Die Erythromycin-Resistenzplasmide und das Quinolone-Resistenzplasmid pGNB-2 aus Bakterien einer kommunalen Abwasserkläranlage. Die Resistenzgene, die für das Design von Oligos für das Resistenzarray ausgewählt wurden, sind über bzw. unter dem jeweiligen Plasmid, auf welchem sie sich befinden, angegeben.

## A



Abbildung A3: Die Klasse 1 Integron-spezifischen Sequenzen aus Belebtschlamm- und Vorfluterbakterien einer kommunalen Abwasserkläranlage (Tennstedt *et al.*, 2003).

## 14.2 Tabellen

Tabelle A1: Die Resistenzgen-spezifischen Oligonukleotide (70 mere) und deren Charakteristika.

| Genname*                                                                                                                                    |     | im Gen | Schmelz-   | Oligonukleotid-Sequenz                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|------------|------------------------------------------------------------------------|--|
|                                                                                                                                             |     | Ende   | temperatur |                                                                        |  |
|                                                                                                                                             |     |        |            |                                                                        |  |
| aac3-Vb_M97172                                                                                                                              | 721 | 790    | 80,6       | tcggtcgcgcaccctcctatctgtttgaagcgcaggatatcgtctcgttcggcgtcacctatctcgaaca |  |
| aac(3)-Id_AY458224                                                                                                                          | 57  | 126    | 78,3       | aatgccatgttcggcgaggcattcaacgaccaagatagttatgcccgcaacaagccgtcatcaagctatc |  |
| aac(6')-Im_AF337947                                                                                                                         | 326 | 395    | 77,7       | gggaatcggtgcagaatattgcagagtagtatgccaatatctacgaacggaaatggatgccgatgcggtg |  |
| aacA_M86913 (aacA_M86913, aadB_AY139594)                                                                                                    | 201 | 270    | 78,3       | gtcatggaggagttggactatggattcttagcggagatcggggatgagttacttgactgcgaacctgctt |  |
| aacA1_AB113580                                                                                                                              | 189 | 258    | 77,7       | gttggctggataggcttaaggccaatgtacaaggaaacctgggaattgcatccattggttgtcagaccag |  |
| aacA4_NC_006352                                                                                                                             | 85  | 154    | 78,3       | cgacacttgctgacgtacaggaacagtacttgccaagcgttttagcgcaagagtccgtcactccatacat |  |
| aacA7_AF263520                                                                                                                              | 55  | 124    | 78,8       | taagcatgcgctgtgagctgtggccagatggcacatgtcaagagcaccagtcagagatcgcagaatttct |  |
| aacA29b_AY139599                                                                                                                            | 145 | 214    | 78,3       | cggctgttgggcatgtcgaactctcgataagacatgacttggaagaactccaaggaatcaagaccggcta |  |
| aacC1_AY139604                                                                                                                              | 337 | 406    | 78,3       | cgcttggtgcttatgtgatctacgtgcaagcagattacggtgacgatcccgcagtggctctctatacaaa |  |
| aacC2_S68058 (aacC2_S68058, aacC3_X13543)                                                                                                   | 529 | 598    | 78,3       | atatccccaacaaacgatgggtgacgtatgagatgccgatgcttggaagaaacggtgaagtcgcctggaa |  |
| aacC3_X55652                                                                                                                                | 600 | 669    | 78,3       | cgcaaagtgtgggtgaccgttgaggactatgacaccggtgatccgcacgacgattatagttttgagcaaa |  |
| aacC4_X01385                                                                                                                                | 500 | 569    | 78,3       | gagacactgcaccattcttcaggatggcaagttggtacgcgtcgattatctcgagaatgaccactgctgt |  |
| aadA4_AY138986 (aadA4_AY138986, aadA5_AY139588)                                                                                             | 469 | 538    | 78,3       | tgccgaacgagcatttttccaaggcgcttttcgacacgattgcccagtggaattcagagtcggattggaa |  |
| aadA7_AY463797                                                                                                                              | 89  | 158    | 78,3       | cgtgcatttgtacggctccgcactggatggcggattgaaaccgtacagtgatattgatttgctggtgact |  |
| aadA9_AJ420072                                                                                                                              | 101 | 170    | 78,3       | tggttctgcaattgatggtggcctcaaaccatatagcgacattgatctgctggttaccgtggatgcacgc |  |
| aadA10_U37105 (aadA10_U37105, adA6/aadA10_AM087405)                                                                                         | 217 | 286    | 78,3       | tttccgttttccctggtcaaagcagagttctccgcgccttggaagttaccattgtcgtgcacagtgacat |  |
| aadA6/aadA10_AM087405                                                                                                                       | 218 | 287    | 81,2       | tttctgcctcccctggccaaagtgaggctctccgcgccttggaagttaccatcgtcgtgcatggtgatgt |  |
| aadA12_AY665771 (aadA1_NC_006352, aadA23_AJ809407,<br>aadA12_AY665771, aadA2_AY115474, aadA8_AY139603,<br>aadA11_AJ567827, aadA13_AY940492) | 110 | 179    | 78,3       | agtggatggcggcctgaagccatacagcgatattgatttgctggttacggtgaccgtaaggcttgatgaa |  |
| aadD_AB037420                                                                                                                               | 111 | 180    | 78,3       | ggctctcttggtcgtcagactgatgggccctattcggatattgagatgatgtgtgtcatgtcaacagagg |  |
| aph_AJ851089                                                                                                                                | 71  | 140    | 78,3       | tgggtataaatgggctcgcgataatgtcgggcaatcaggtgcgacaatctatcgattgtatgggaagccc |  |
| aph2_U00004                                                                                                                                 | 547 | 616    | 78,8       | atctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggatt |  |
| aph(2')-Ib_AF337947                                                                                                                         | 691 | 760    | 75,3       | cagatgatttcgggaaagaatttggcaggaaggtattaaaatactatcagcataaggcgccggaagtagc |  |
| aphA_NC_006352                                                                                                                              | 144 | 213    | 78,3       | ggctccgacttgtttctgaagcacggcaaagatgcttttgccgacgacgtgactgatgaaatggtgagat |  |
| aphA-3_V01547                                                                                                                               | 131 | 200    | 78,3       | aatgacggacagccggtataaagggaccacctatgatgtggaacgggaaaaggacatgatgctatggctg |  |

| aphA-6_X07753                                                                                               | 142 | 211 | 76,5 | cagagaccacatacagtgtctctcgtgaagcgaaaatgttgagttggctctctgagaaattaaaggtgcc  |
|-------------------------------------------------------------------------------------------------------------|-----|-----|------|-------------------------------------------------------------------------|
| aphA-7_M29953                                                                                               | 472 | 541 | 75,9 | cgttatatcagtggctttgcgaaaatcaacctcaagaagaactgtgtctctctc                  |
| strA_NC_004840                                                                                              | 523 | 592 | 78,3 | gcaccgatatggttgtttgccatggtgatccctgcatgccgaacttcatggtggaccctaaaactcttca  |
| strB_NC_004840                                                                                              | 52  | 121 | 78,3 | tcattgcggacaccttttccagcctcgtttggaaagtttcattgccagacgggactcctgcaatcgtcaa  |
| ampC_J01611                                                                                                 | 70  | 139 | 78,3 | tcaacgatattgtgcatcgcacaattaccccgcttatagagcaacaaaagatcccgggtatggcggtggc  |
| blaCMY-9_AB061794 (blaCMY-9_AB061794, cmy-<br>10_AF357597)                                                  | 625 | 694 | 78,3 | accacacctatgtcaatgtgccgaagcaggccatggcgagttatgcctatggctattcgaaagaggacaa  |
| cmy-13_AY339625 (cmy-13_AY339625, cmy-5_Y17716)                                                             | 50  | 119 | 78,3 | cacgtttgcctccgccaaaacagaacaacagattgccgatatcgttaatcgcaccatcaccccgttgatg  |
| ctx-m26_AY157676 (ctx-m26_AY157676, ctx-m8_AF189721)                                                        | 239 | 308 | 78,3 | agcggcggtgcttaagcaaagtgaaacgcaaaagggcttgttgagtcagcgggttgaaattaagccctca  |
| ctx-m8_AF189721                                                                                             | 240 | 309 | 75,3 | agcggctgtgctcaagcaaagtgaaacgcaaaagaaggtgttgagtcagaaggttgagattaaatcttca  |
| ctx-m27_AY156923                                                                                            | 150 | 219 | 78,3 | gcgctcatcgataccgcagataatacgcaggtgctttatcgcggtgatgaacgctttccaatgtgcagta  |
| ctx-m32_AJ557142                                                                                            | 93  | 162 | 78,3 | gacgtacagcaaaaacttgccgaattagagcggcagtcgggaggaagactgggtgtggcattgattaaca  |
| ctx-m4_Y14156                                                                                               | 153 | 222 | 78,3 | cagattaacaccgccgataattcgcagattctctacgtggccgatgagcgttttgcgatgtgcagtacca  |
| ges-3_AY494717                                                                                              | 63  | 132 | 78,3 | ttaaccttcaagaccgatcttgagaagctagagcgcgaaaaagcagctcagatcggtgttgcgatcgtcg  |
| imp-2_AJ243491 (imp-2_AJ243491, imp-5_AF290912)                                                             | 238 | 307 | 78,3 | ggtttgtggagcgcggctataaaatcaaaggcactatttcctcacatttccatagcgacagcacaggggg  |
| imp-2_AJ243491                                                                                              | 616 | 685 | 74,7 | gttaaagcaaaactggttgtttcaagtcatagtgaaattggggacgcatcactcttgaaacgtacatggg  |
| imp-5_AF290912 (imp-10_AB074433, imp-4_AF244145, imp-<br>5_AF290912, bla-IMP-7_AF318077, blaIMP-9_AY033653) | 277 | 346 | 77,7 | cctctcattttcatagcgacagcacgggcggaatagagtggcttaattctcaatctatccccacgtatgc  |
| imp-5_AF290912 (imp-5_AF290912, imp-11_AB074437)                                                            | 277 | 346 | 77,7 | cctctcattttcatagcgacagcacgggcggaatagagtggcttaattctcaatctatccccacgtatgc  |
| imp-5_AF290912                                                                                              | 616 | 685 | 76,5 | ggtaaggcaaaactggtagttccaagtcacagtgaagttggagacgcatcactcttgaaacgtacgt     |
| blaIMP-9_AY033653 (blaIMP-9_AY033653, imp-<br>11_AB074437)                                                  | 453 | 522 | 78,3 | tatcctggtccagggcacgctccagataacgtagtggtttggctgcctgaaaatagagttttgttcggtg  |
| imp-11_AB074437                                                                                             | 454 | 523 | 74,7 | tatccaggcccagggcacactcaagataacgtagtggtttggctacctaaaaataaaatcttatttggtg  |
| imp-13_AJ550807 (imp-13_AJ550807, imp-2_AJ243491)                                                           | 115 | 184 | 77,7 | cgttcgaagaggttaacggttgggggggttgttactaaacacggtttagtggtgcttgtaaacacagacgc |
| imp-16_AJ584652 (imp-16_AJ584652, imp-2_AJ243491, imp-11_AB074437)                                          | 615 | 684 | 78,3 | ggtaatgcaaaactggttgttccaagccatagtgacgtcggagatgcgtcgctcttgaagcttacatggg  |
| imp-16_AJ584652 (imp-16_AJ584652, imp-5_AF290912, imp-12_AJ420864, imp-13_AJ550807)                         | 615 | 684 | 78,3 | ggtaatgcaaaactggttgttccaagccatagtgacgtcggagatgcgtcgctcttgaagcttacatggg  |
| kpc-3_AF395881                                                                                              | 270 | 339 | 78,3 | gacacacccatccgttacggcaaaaatgcgctggttccgtggtcacccatctcggaaaaatatctgacaa  |
| nps-1_NC_006388                                                                                             | 53  | 122 | 78,3 | tgccgaagattcggcagtcgaacaactgtttcgcagtgcagatatcgacggaaccatcgtgatcgaatct  |
| nps-2_NC_003430                                                                                             | 145 | 214 | 78,3 | ttcacaacgatcctcgtgcgcaacaacgatacccggcagcttccacgttcaaggtactcaataccttgat  |
| oxa-1_AY139600                                                                                              | 138 | 207 | 76,5 | tacgatgcatccacaaacgctgaaattgctcaattcaat                                 |
| oxa-2_NC_007502 (oxa-2_NC_007502, oxa-21_Y10693, oxa-<br>53_AY289608)                                       | 50  | 119 | 78,3 | tttcgcgcatgcgcaagaaggcacgctagaacgttctgactggaggaagtttttcagcgaatttcaagcc  |
| oxa-5_X58272                                                                                                | 218 | 287 | 78,3 | tgctctaataggtcttgaaaccggcgccataaaagatgaacggcaggttttcaaatgggacggcaagccc  |

| oxa-9_M55547                                                                         | 50  | 119 | 78,3 | cccaatcagttccgtggcttctgatgaggttgaaacgcttaaatgcaccatcatcgcagacgccattacc  |
|--------------------------------------------------------------------------------------|-----|-----|------|-------------------------------------------------------------------------|
| oxa-10_AY115475 (oxa_AY115475, oxa-56_AY445080)                                      | 605 | 674 | 78,3 | gcattcaaaaactggtttttctggtgtgggaactgagtcaaatcctggtgtcgcatggtgggttgggtgg  |
| oxa-12_U10251                                                                        | 672 | 741 | 78,8 | aaaccgggcaagcagctcattttcgttcataccgtggtgcagaaaccgggcaagcaa               |
| oxa-18_U85514                                                                        | 60  | 129 | 78,3 | atttcaacggtttgccttacgttctccccggcaaatgccgcacaaaaactgtcctgcacgcttgttatcg  |
| oxa-20_AF024602                                                                      | 141 | 210 | 78,3 | gatgaacgcacaaacggtaattccacatcggtttataatgaatcccgggctcagcagcgctattcgcctg  |
| oxa-22_AF064820                                                                      | 292 | 361 | 81,2 | tgtggctcaagtattcggtggtctggtattcgcagcgcattacgcatgcgatgggcgcgcagaccttcca  |
| oxa-27_AF201828                                                                      | 337 | 406 | 78,3 | gggaaaaagacatgacactaggagaagccatgaagctttctgcagtcccagtctatcaggaacttgcgcg  |
| oxa-29_AJ400619                                                                      | 391 | 460 | 78,3 | ccggcgacaaaggtcagaataatggattaacccattcctggctatcaagctcgcttgccatctcaccaag  |
| oxa-40_AF509241                                                                      | 360 | 429 | 78,3 | ttaggtgaggcaatggcattgtcagcagttccagtatatcaagagcttgcaagacggactggcctagagc  |
| oxa-45_AJ519683                                                                      | 196 | 265 | 78,3 | atgetggcattettgtggacgcgcataatccgcgctgggactacaagccggaattcaatggctacaaatt  |
| oxa-46_AF317511 (oxa-46_AF317511, oxa_AY139598)                                      | 50  | 119 | 78,3 | attcgtgtatgcgcaagaacatgtggtaatccgttcggactggaaaaagttcttcagcgacctccaggcc  |
| oxa-48_AY236073                                                                      | 222 | 291 | 78,3 | cccaatagcttgatcgccctcgatttgggcgtggttaaggatgaacaccaagtctttaagtgggatggac  |
| oxa-50_AY306130                                                                      | 439 | 508 | 80,0 | aggttgtggataacttetggttggtgggacegetgaagateagegegatggaacagaecegetttetget  |
| oxa-54_AY500137                                                                      | 242 | 311 | 78,3 | ggatttaggtgtcgtgaaggatgagcatcaagtctttaaatgggatggacagactcgggatatcgcggcg  |
| oxa-55_AY343493                                                                      | 159 | 228 | 78,3 | cgctgggacaagctgttcgaatccgcaggagttaaaggcagtttgctgctttgggatcaaaagcgttctt  |
| oxa-58_AY665723                                                                      | 616 | 685 | 78,3 | tgttgtatgtagagcgcagagggggagaatcgtctatatgctaaaagtggctggggaatggctgtagaccc |
| oxa-60_AF525303                                                                      | 373 | 442 | 81,8 | cgatctatcaggaagtcgcgcgccgcgttggcttcgagcgcatgcaggcttatgtcgatgcgttcgacta  |
| oxa-61_AY587956                                                                      | 106 | 175 | 76,5 | tttatgatggaaaaacttgggcgagtaacgacttttcaagggctatggagactttctctccccgcttccac |
| oxa-75_AY859529                                                                      | 643 | 712 | 78,3 | acgcaaaaagtggttggggatgggatgtaaacccacaagtaggctggttaactggatgggttgttcagcc  |
| per-1_Z21957                                                                         | 103 | 172 | 78,3 | ttgaatccatagtcattggaaaaaaagccactgtaggcgttgcagtgtgggggcctgacgatctggaacc  |
| per-2_X93314                                                                         | 92  | 161 | 78,3 | aaaagagcagattgaaaaccatagtgacgggtaaaaaggccactgtaggtgtagcagtgtgggggcctgac |
| shv-34_AY036620                                                                      | 68  | 137 | 78,3 | gcagccgcttgagcaaattaaactaagcgaaagccagctgtcgggcagcgtaggcatgatagaaatggat  |
| TEM-1_AJ851089                                                                       | 66  | 135 | 78,3 | gctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcg  |
| tla-1_AF148067                                                                       | 688 | 757 | 78,3 | ctaccggaccgaaacgactcaaaggacttttgcccgatggaactgttgttgctcataaaaccggaagctc  |
| tla-2_NC_006385                                                                      | 304 | 373 | 78,3 | aaaaagatcttcatcccggaacttggagtcctctgcgcgacaaatatccgaatggcggagtgagcattcc  |
| veb-1_AF010416                                                                       | 286 | 355 | 75,9 | cccctcaagaccttttgcctaaaacgtggagtccgattaaagaggaattccctaatggaacaactttgac  |
| vim-4_AY509609 (vim-4_AY509609, vim-5_AY144612, vim-<br>12_DQ143913, vim-2_AF263520) | 178 | 247 | 78,3 | agtcgtttgatggcgcggtctacccgtccaatggtctcattgtccgtgatggtgatgagttgcttttgat  |
| vim-7_AJ536835                                                                       | 87  | 156 | 78,3 | ggtgaatatccgacagtagatgacataccggtaggggaagttcggctgtacaagattggcgatggcgttt  |
| cat_M11587                                                                           | 206 | 275 | 77,1 | acatgcagaattccgcatggcaatgaaagacggggaattggtgatatgggatagtgttaaccctgggtac  |
| cat_M35190                                                                           | 374 | 443 | 77,7 | gtccgcaaagcctaatcctccggaaaacactttccctgtttctatgataccgtggacaagctttgaaggc  |
| cat_M58515 (cat_M58515, cat_X68412, cat_NC_005243)                                   | 520 | 589 | 72,4 | agtaagaataataagatctatttaccagtctcattgcaagttcatcatgcggtatgtgatggttaccatg  |
| cat_S48276                                                                           | 141 | 210 | 77,7 | cccgcccttttgtatgccgtttcaacagtagttaaccggcatgaagaattccgtatgactgtggacgatg  |
| cat_U38429                                                                           | 520 | 589 | 72,4 | gtgagaataataaaatttatataccagttgccttacagcttcatcatgctgtatgtgatggttaccatgc  |

| cat2_AY509004 (cat2_AY509004, cmlA_X53796,<br>catII_X53797)                   | 60  | 129 | 78,3 | cgtcagcagattaaatgcggattcagcctgaccaccaaactcgatattaccgctttgcgtactgcactgg              |
|-------------------------------------------------------------------------------|-----|-----|------|-------------------------------------------------------------------------------------|
| catIII_X07848                                                                 | 516 | 585 | 77,7 | cagcaagaaggggatagactgttattgccgctctcagtacaggttcatcatgcagtttgtgatggcttcc              |
| catA_AJ851089                                                                 | 168 | 237 | 78,3 | ccggcctttattcacattcttgcccgcctgatgaatgctcatccggaattccgtatggcaatgaaagacg              |
| catB2_AY139601                                                                | 65  | 134 | 78,3 | catcaaggtagggcggtatagctactattccggctattaccatgggcactcgtttgatgattgtgctcgc              |
| catB4_AF322577                                                                | 65  | 134 | 78,3 | tatcaaagttgggcggtacagctattactctggctactatcatgggcactcattcgatgactgcgcacgg              |
| catB6_AJ223604                                                                | 75  | 144 | 78,3 | ggtcggtacagctactactctggttactatcacgggcattcatt                                        |
| catB7_AF036933                                                                | 476 | 545 | 80,6 | gaccattcgtaagcgcttttccgatggcgatatccagaacctgctggaaatggcctggtgggactggcca              |
| catB8_AF227506                                                                | 68  | 137 | 78,3 | cagagtaggccggtatagctattactctggctactatcacgggcactcatttgatgaatgcgcgcgatac              |
| catB9_AF462019                                                                | 288 | 357 | 77,7 | gcagatgcacgcgatggttttacgcgttcaggagacacaattattggtcatgatgtgtggattggcactg              |
| catP_U15027                                                                   | 175 | 244 | 75,3 | accgccattcagagtttaggacggcaatcaatcaagatggtgaattggggatatatgatgagatgatacc              |
| cat-TC_U75299 (cat-TC_U75299, cat_AJ312056)                                   | 163 | 232 | 74,2 | tcttagtgacaagggtgataaactcaaatacagcttttagaactggttacaatagcgacggagagttagg              |
| cmlA_CT025832                                                                 | 477 | 546 | 82,4 | tgcgctgatcggcgagttttgggggatggcaggcgatcttcatcacactggctgcactggcttcgctcgc              |
| cmlA1_NC_006388 (cmlA1_NC_006388, cmlA5_AY115475)                             | 52  | 121 | 78,3 | tgttatcaccgttcgatttattggcatcactcggcatggacatgtacttgccggcagtgccgtttatgcc              |
| cmlB_AF034958                                                                 | 52  | 121 | 78,3 | tgttatcacctttcgatttactggcatcactcggcatggacatgtacttgccagcggtgcctttcatgcc              |
| cmxA_AF024666                                                                 | 204 | 273 | 80,0 | ctcacattgatcgtttgccttctcgtgttcgcgggaagccacgtcatcggagcgatgacaccagtgttct              |
| fexA_AJ549214                                                                 | 302 | 371 | 78,3 | tttatgtgcaattgccccgaacctcccattgttggttttgggaagaatggttcagggtgctgggatgtcc              |
| floR_AF118107 (floR_AF332662, floR_AJ518835,<br>floR_AF118107, cmlA_CT025832) | 476 | 545 | 78,3 | agcattgatcggcgagttcttgggatggcaggcgatattcattactttggctatactggcgatgctcgca              |
| qnr_AB187515 (qnr_AB187515, qnrS2_DQ460733)                                   | 53  | 122 | 78,3 | aagtgateteacetteacegettgeacatteattegeagegaetttegaegtgetaaettgegtgataeg              |
| qnrS2_DQ460733                                                                | 54  | 123 | 75,9 | aagtgatattactttcactgcttgcacctttatccgatgcgattttcgacgtgctaacttgcgtgatgcg              |
| qnrA3_DQ058661 (qnrA3_DQ058661, qnr_AY070235)                                 | 50  | 119 | 78,3 | tttgagtgacagtcgttttcgccgctgccgcttttatcagtgtgacttcagccattgccagctaagggat              |
| qnrB1_DQ351241 (qnrB1_DQ351241, qnrB2_AM234698, qnrB5_DQ303919)               | 124 | 193 | 78,3 | tttcaggtgccgacctgagcggcactgaatttatcggctgtcagttctatgatcgtgaaagccagaaagg              |
| qnrB4_DQ303921                                                                | 204 | 273 | 78,3 | agttgtgatctctccatggctgatttcaggaatatcaatgcgctgggaatcgaaattcgccactgccggg              |
| ereA2_AF512546 (ereA2_AF512546, ereA_AY183453)                                | 100 | 169 | 78,3 | gcattggcgagggtgctcactttgtcgcggagttctcactggctagagctagtcttattcgctattttgt              |
| ereB_X03988                                                                   | 723 | 792 | 78,3 | gctatgtcgggctttatttcaggaggcggaatgcagggcgatatgggtgcaaaagacaaatacatggcag              |
| erm(A)_X03216                                                                 | 152 | 221 | 75,3 | gagtcgatcagttactgctatagaaattgatggaggcttatgtcaagtgactaaagaagcggtaaacccc              |
| erm(GT)_M64090                                                                | 105 | 174 | 73,6 | gagattggttcagggaaaggtcatttctcgtttgaattagctaaaaggtgtaattatgtaaccgccattg              |
| erm(TR)_AF002716                                                              | 111 | 180 | 75,3 | gggtcaggaaaaggacattttaccaaggaacttgtggaaatgagtcaacgggtgaatgctatagagattg              |
| erm(Y)-erm(GM)_AB014481                                                       | 111 | 180 | 72,4 | ggtt caggaaa aggg cattt cacactaga actggtt caa aa atgta attatgta a cagtt atcgag atag |
| ermA_X51472                                                                   | 52  | 121 | 78,3 | accacaagatcatcaactccatcatcgaccttgtgaaacaaac                                         |
| ermB_M11180                                                                   | 408 | 477 | 78,3 | attcaccgaacactagggttgctcttgcacactcaagtctcgattcagcaattgcttaagctgccagcgg              |
| ermC_M17990                                                                   | 101 | 170 | 74,7 | ctttgaaatcggctcaggaaaagggcattttacccttgaattagtacagaggtgtaatttcgtaactgcc              |

| ermD_M29832                                  | 147  | 216  | 78,3 | gagttaggagcgggaaaaaggggctttgacaactgtgctaagtcaaaaagccggtaaggtattggcagtgg |
|----------------------------------------------|------|------|------|-------------------------------------------------------------------------|
| ermF_M14730                                  | 467  | 536  | 76,5 | tgatttgaaacttgtctatgaggtaggtcctgaaagtttcttgccaccgccaactgtcaaatcagccctg  |
| ermG_M15332                                  | 101  | 170  | 73,6 | ctttgaaataggtgcagggaaaggtcattttactgctgaattggtaaagagatgtaattttgttacggcg  |
| lnu(A)_J03947                                | 62   | 131  | 75,3 | ggaagtaactcattggttagatggaggctggggcgtagatgtattaactggaaaacaacaaagagaacac  |
| mefA_AJ715499                                | 330  | 399  | 78,3 | atccgtagcattggaacagcttttcacaccccggctctcaatgcggttacgccacttttagtaccagaag  |
| mefE_AE008470                                | 1021 | 1090 | 75,3 | ctgagtttctcggtagagtctttggaatcatctttacggtagctattctttttatgccagttgggtctgg  |
| mefE_AF274302 (mefE_AF274302, mefI_AJ971089) | 171  | 240  | 77,7 | gcgattttgggacctgccattggtgtgctagtggatcgtcatgataggaagaagataatgattggtgccg  |
| mph(A)_NC_006385                             | 559  | 628  | 80,6 | attcgtcgtggccagatttctccgtggtggtgcatggcgatctctacgtgggccatgtgctcatcgacaa  |
| mph(B)_AM260957                              | 296  | 365  | 78,3 | gctgacatttgacgcctcgacctatgagacgacctggcactttgaccagaattctccggtctatgttgaa  |
| mph(BM)_AF167161                             | 614  | 683  | 78,3 | ggtagataaccaagcaaacgtcacaggtctcatagactggactgaagcaacccactccgacccatcaatg  |
| mph_DQ839391                                 | 92   | 161  | 78,3 | ggtcgtttttgctcttgatacaaaggggcaacaatggttgctgcgtattcctcgtcgtgatggcatgagg  |
| mphB_D85892                                  | 369  | 438  | 78,3 | cacaagtcgctaggcagggtgttagcagagcttcatagcatacctagtaataaagccgcagcgcttgatc  |
| mel_DQ839391                                 | 183  | 252  | 78,3 | cagcgttttggtgattttgcacatatcagccaactgggcggaatcgaaatagaaacggtcgaagaccggg  |
| vgb(B)_AF015628                              | 521  | 590  | 78,3 | agaatatcctctaccaacaaatgcagcggctccagtgggtatcactagtggtaacgatggtgcactctgg  |
| vgh(A)_M20129                                | 664  | 733  | 78,3 | cgccaaacgctcgacctcatgcaattactgctggagcaggaattgatttatggtttactgaatggggggc  |
| mecA_AB037671                                | 1032 | 1101 | 76,5 | ggctcaggtactgctatccaccctcaaacaggtgaattattagcacttgtaagcacaccttcatatgacg  |
| qacB_AF053771                                | 936  | 1005 | 78,3 | ggcttatacctattacctatggcaataggagctatggtgtttgcaccaattgcacccggattagcggcgc  |
| qacD_M37888                                  | 149  | 218  | 75,3 | gcaacacctaccactaaatataacttatgcaacttgggcgggactaggtttagtcttaacaaccgtagtc  |
| qacEDelta1_NC_006385                         | 132  | 201  | 78,3 | tattttetttetetggttetgaaatecatecetgteggtgttgettatgeagtetggtegggaeteggeg  |
| qacF_NC_007502                               | 87   | 156  | 78,3 | ctggtgccaagcgtcatcgtggtggtcggctacgtggttgctttctatttcttgtcgattaccttcaagt  |
| qacF_AY139598 (_AY139598, qacH_AY139595)     | 51   | 120  | 78,3 | acttccgcactgaagtctagccatggattcactaggttagttccttcc                        |
| qacG_Y16944                                  | 158  | 227  | 72,4 | gcccttaaatataacttacgcaacatgggcaggtctaggattagtattaacaacaataatctcagttatc  |
| qacG2_AJ609296                               | 51   | 120  | 78,3 | acctctgcgctcaagtctagtgagggctttactaggttagtaccgtcttttatcgtcgtagcgggatacg  |
| qacH_Y16945                                  | 132  | 201  | 71,8 | tttctgagtaaaactatgcaacatttaccacttaatattacttac                           |
| arr2_AF205943                                | 66   | 135  | 78,3 | ggaaccaaagccaatttggcgattggtgacttgctaaccacagggttcatctctcatttcgaggacggtc  |
| acrB_M94248                                  | 149  | 218  | 78,3 | cggcgctgatgcgaaaacagtgcaggacacggtgacacaggttatcgaacagaatatgaacggtatcgat  |
| acrD_U12598                                  | 77   | 146  | 78,3 | gattttttcattgcccgttgaacaataccccgatctcgcgccaccgaatgtgcgagtgaccgctaactat  |
| mexB_L11616                                  | 415  | 484  | 79,4 | tggtcggtgtggtttccaccgacggcagcatgaccaaggaagacctgtcgaactacatcgtttccaacat  |
| mexD_NC_003430                               | 390  | 459  | 78,3 | caggetteegeeggatttetgetgatetatgeeetgegetacaaagatggegttaateaegaaaacaeta  |
| mexD_U57969                                  | 2080 | 2149 | 78,8 | aggetegegataetettettggegagateeagaeeaaceegaaatteetttaegegatgatggaaggaet  |
| mexF_X99514                                  | 688  | 757  | 78,3 | ataccatcttccagttgtcgatcaacacccagggtcgcctggtcaccgaagaagagttcgagaacatcat  |
| mexI_AE004837                                | 2685 | 2754 | 80,6 | acgatgaacatctatacgcagatcggcctggtcaccctgatcggcctgatcagcaagca             |
| mexY_AB015853                                | 2751 | 2820 | 80,0 | aacgacatetaetteaaggteggeetgateaceateateggeeteteggegaagaaegeeateeteatea  |
| orf11_NC_006385                              | 533  | 602  | 78,3 | gatggtattcattccgctcaaggatgcccaagaggctcagttcctcaaggataacgacgccatttggcaa  |

| msr(A)_X52085                                    | 717  | 786  | 75,9 | gcaccagatcgtttaagtgcatcaaaagaaaaaggcacggttgagaaggctgctcaaaaacaagctaagc                    |
|--------------------------------------------------|------|------|------|-------------------------------------------------------------------------------------------|
| sulI_NC_006388                                   | 525  | 594  | 78,8 | atgggatttttcttgagccccgcaccggaaacatcgctgcacgtgctgtcgaaccttcaaaagctgaagt                    |
| sulII_AJ851089                                   | 291  | 360  | 78,3 | cgtggtgtggcctatctcaatgatattcgcggttttccagacgctgcgttctatccgcaattggcgaaat                    |
| sul3_AY316203                                    | 108  | 177  | 78,3 | gatggagcagatgtgattgatttgggagccgcttccagtaatcctgatacaactgaagtgggcgttgtgg                    |
| dfr13-dfrXIII_Z50802                             | 55   | 124  | 78,3 | ttattggcaatggtcccgatatcccctggaaaatcccaggtgagcagaagatttttcgcaggctcaccga                    |
| dfr16_AY259085                                   | 124  | 193  | 76,5 | tagttggacgcaaaacttttgagtcaatgggcgctctcccaaatcgaaagtatgcagttgtaactcgctc                    |
| dfr17_AY139588 (dfr17_AY139588, dfrVII_AY139596) | 61   | 130  | 76,5 | tcccgtggtcagtaaaaggtgagcaactactctttaaagcgctcacatataatcaatggctccttgtcgg                    |
| dfrA10-dhfrX_L06418                              | 471  | 540  | 75,3 | ggtgatccaatagattctgtgtatagcttgtctattgataagtttgttagaccagcttcgctggttgggg                    |
| dfrA19_AM234698                                  | 60   | 129  | 78,3 | ggcggcaagattccatggaaatgcaaagaagacatggcgcgatttacgcggatttctaaagagatccgcg                    |
| dfrB2_DQ839391                                   | 88   | 157  | 78,8 | tacgcaagaaatctggtgccgcttggcagggtcaagtcgtcggttggtattgcacaaaactcactc                        |
| dfrD_Z50141                                      | 113  | 182  | 74,2 | cactacaaaaggacatgcaatcatattaggtagaaagaaccttcaatcaa                                        |
| dfrII_AY139601                                   | 78   | 147  | 78,3 | gtcagtaatccagttgctggcaattttgtattcccatcgaacgccacgtttggtatgggagatcgcgtgc                    |
| dfrV_AY139589                                    | 55   | 124  | 78,3 | cacacataccctggtccgcgaaaggagagcagctactctttaaagccttgacgtacaaccagtggctttt                    |
| dfrVI_Z86002                                     | 63   | 132  | 77,1 | ccttggcatgtacaaggcgagcagctcctattcaaagccatgacttacaatcaat                                   |
| dfrXII_AY139605                                  | 76   | 145  | 78,3 | tcccctggaaaaattccgggtgagcagaagatttttcgcagactcactgagggaaaagtcgttgtcatggg                   |
| dhfr_J03306                                      | 54   | 123  | 78,3 | aatcttattccatggcatctacctgccgatctgcgtcatttcaaagctgtcaccctggggaaacctgtgg                    |
| dhfR_Z74777                                      | 105  | 174  | 78,3 | gaaacaactctgaatcatgctatcttgatggggcgggtaacctttgatggaatggggcgtcgcttgctt                     |
| dhfr1_NC_006385                                  | 98   | 167  | 77,7 | ccaatggctgttggttggacgcaagacttttgaatcaatgggagcattacccaaccgaaagtatgcggtc                    |
| dhfrIX_X57730                                    | 140  | 209  | 78,3 | aacttttgcctcactgcctaaagtgctgcccggacgacttcatgtggtagtcagtaaaacagtaccaccc                    |
| dhfrVIII_U10186                                  | 51   | 120  | 78,3 | aaggacaacgcacttccctggccaccactaaaaggcgatctggccagattcaaaaaaattgaccatgggga                   |
| dhfrXV_Z83311                                    | 114  | 183  | 78,3 | cagtggcttttggtaggccgaaagactttcgagtcaatgggggctttacccaaccgaaaatatgccgttg                    |
| effJ-tet(35)_AF353562                            | 50   | 119  | 78,3 | catcggtggtatcttggtgtcacacggcatcactgaatactcggcgcttggtgcttacgttcgtcttatt                    |
| tet(30)_AF090987                                 | 573  | 642  | 78,3 | tt caaggaact taacccgttggcgccattggtgtggctttggaatttcaagccgctcctgccacttgtaa                  |
| tet(31)_AJ250203                                 | 200  | 269  | 78,3 | cttt caacct caa aagggcg agt actggg cgg atttt ctg cg ag aa aatg cg aa aag cttt cg taggg cg |
| tet(32)_AJ295238                                 | 252  | 321  | 78,3 | gcataccgctctttatctgtccttgacggagctgttttagtcatttcggcaaaagacggcgtacaggcac                    |
| tet(34)_AB061440                                 | 108  | 177  | 78,3 | cgtggcggtctagtaccgggtgctattcttgcgcgtgaacttggtattcgtcacgttgataccatttgta                    |
| tet(36)_AJ514254                                 | 214  | 283  | 78,3 | tcatcgacactcctggacacatggactttctggcagaggtagaacgcacttttaggatgctagatggtgc                    |
| tet(37)_AF540889                                 | 164  | 233  | 78,3 | atatgagactgatccaggcttggttatctgctacggaacgatgtatgggaacacagaggatcgcacaccg                    |
| tet(38)_AY825285                                 | 127  | 196  | 76,5 | ctgtaacgacagtaagttggcaagcgacattagccggtttagtaattggtattggcgctgtagtatacgc                    |
| tet(M)_M21136                                    | 1294 | 1363 | 78,3 | ttcacatcgaagtgccgccaaatcctttctgggcttccattggtttatctgtatcaccgcttccgttggg                    |
| tet(M)_M85225                                    | 1294 | 1363 | 78,3 | ttcacatcgaagtgccgccaaatcctttctgggcttccattggtttatctgtatcaccgcttccgttggg                    |
| tet(M)_X04388                                    | 996  | 1065 | 78,3 | ttgccacagagagagagaattgaaaatcccctcctctgctgcaaacgactgttgaaccgagcaaacctc                     |
| tet(M)_X90939                                    | 996  | 1065 | 78,3 | ttgccacagagagagagaattgaaaatcccctcctgctgcaaacgactgttgaaccgagcaaacctc                       |
| tet(O)_Y07780                                    | 1281 | 1350 | 78,3 | gcagaatataccatccacatagaagtcccgccaaatcctttctgggcttctgtcgggttgtccatagagc                    |

| tet(S)_L09756                                   | 1509 | 1578 | 78,3 | ggtctatattacagccctgtcagtacgccagcagatttccgaatgcttgcgcctattgtactagagcagg  |
|-------------------------------------------------|------|------|------|-------------------------------------------------------------------------|
| tet(T)_L42544                                   | 214  | 283  | 76,5 | tcatagatacacctgggcacatggatttcatagccgaagttgagcgaactctgaaagtgttagatggagc  |
| tet(U)-ORF1_U01917                              | 31   | 100  | 75,3 | ggcatgcgatggttcaggaaagcttagatagttttgcaagcccgcattttttgccgattgatataaaacc  |
| tet(X)_M37699                                   | 139  | 208  | 78,3 | gagacaacgaccgagaggcaagaatttttggtggaacccttgacctacacaaaggttcaggtcaggaagc  |
| tet(Y)_AF121000                                 | 91   | 160  | 80,0 | acatgatcccactgcacgtcggactactgacagcgctctatgcgatcatgcagtttctttgcgccccgat  |
| tet_Q_L33696 (tet_Q_L33696, tet_Q_X58717)       | 72   | 141  | 78,3 | tttgccagtggagcaacggaaaagtgcggccgtgtggataatggtgacaccataacggactctatggata  |
| tet_W_AJ222769 (tet_W_AJ222769, tet_W_AY049983) | 145  | 214  | 78,3 | agcggcagcgtgggattaccattcaagcggcagtcacttccttc                            |
| tetA(33)_AJ420072                               | 648  | 717  | 78,3 | ttcctattaatcgcattcggccttgttcaattcattgggcaggctccaggtgcgacctgggtgctgttta  |
| tetA(39)_AY743590                               | 64   | 133  | 78,3 | ttatgccgatcttgcctgaattattacggtcattggctggagctgaagcaggcggtgttcactatggtgc  |
| tetA(J)_AF038993                                | 262  | 331  | 78,3 | tggcttgccccacctcattatggatgctctacattggacgaataattgcgggtataacaggagccactgg  |
| tetA(Y)_AF070999                                | 138  | 207  | 78,3 | ttatcgctttatgcgtttatgcaggtcttttgcgcgcccgttttagggcggttatctgaccgctatggac  |
| tetA_L06940                                     | 122  | 191  | 78,3 | gaactacggtgttttattggcgctgtatgcaatgatgcaagtgatttttgcccctcttctcggccgctgg  |
| tetA_NC_006388                                  | 100  | 169  | 78,3 | atatcgtccattccgacagcatcgccagtcactatggcgtgctgctagcgctatatgcgttgatgcaatt  |
| tetA_NC_004840                                  | 100  | 169  | 79,4 | atctggttcactcgaacgacgtcaccgcccactatggcattctgctggcgctgtatgcgttgatgcaatt  |
| tetA_AJ851089                                   | 149  | 218  | 78,3 | tgcgttaatgcaggttatctttgctccttggcttggaaaaatgtctgaccgatttggtcggcgcccagtg  |
| tetB(P)_L20800                                  | 1324 | 1393 | 77,7 | tgcaggaagacttaaatccattttgggcgacagtaggcttagaaatagaaccagcagggagaggcgaagg  |
| tetBSR_D12567                                   | 317  | 386  | 78,3 | cattctagcccgatttattcaaggaattggtgcagccgcattcccagctcttgtgatggttgtcgttgcg  |
| tetD_L06798                                     | 246  | 315  | 78,3 | tttgattacacactgctggcactgtccaatgtgctgtggatgttgtatctcgggcggattatctccggga  |
| tetG_AF133139 (tetG_AF133139, tetG_AF133140)    | 247  | 316  | 78,3 | tcgattacacgattatggcatcagcgccggtcttatgggtgctgtatattggccggctcatttctggcat  |
| tetH_AJ245947 (tetH_AJ245947, tetH_Y15510)      | 180  | 249  | 78,3 | ctaggacgactgtctgataaatacggcagaaaacccatcttgctgttttcccttttaggcgcggcactcg  |
| tetK_U38428                                     | 316  | 385  | 75,3 | tgatttttggtaggttagtacaaggagtaggatctgctgcattcccttcactgattatggtggttgtagc  |
| tetL_U17153                                     | 319  | 388  | 78,3 | ttatggctcgttttattcaaggggctggtgcagctgcatttccagcactcgtaatggttgtagttgcgcg  |
| tetV_AF030344                                   | 885  | 954  | 78,8 | tatetcacgaccatgatgetgatgtggggteteggetegatteceettgtgategtgggatatacategt  |
| luc_D25416                                      | 1330 | 1399 | 78,3 | aaggetateaagtteegeeegegagttagaagetttaetgetgeageateegtttattgaagatgeagg   |
| luc_D25416_4                                    | 1330 | 1399 | 78,3 | aaggetateaagteeegeegeegagttggaagetttaetgetaeageateegtttategaagatgeagg   |
| luc_D25416_7                                    | 1330 | 1399 | 78,3 | aaggetateaagteecgeeceacegagttggaagetteaetgetaeageateeatttategaagatgeagg |
| luc_D25416_10                                   | 1330 | 1399 | 78,3 | aaagccatcaagtcccgcccaccgagttggaagcttcactgctacagcatccatttatcgaagatacagg  |
| luc_D25416_14                                   | 1330 | 1399 | 78,3 | aaagccatcaagtcccgtccaccgagttggaaacttcactgctacagtatccatttatcgaaaatacagg  |
| luc_D25416_18                                   | 1330 | 1399 | 78,3 | aaagccatcgagtcccgtccaccgggttggaaacttcaccgctacagtatccattcatcgaaaatacagg  |
| luc_D25416_21                                   | 1330 | 1399 | 78,3 | aaagccatcgaatcccgtccaccgggttggaaacttcaccgctacagtacccattcatcgaaaatacaga  |
| gfp_M62653                                      | 554  | 623  | 78,3 | tactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcg  |
| gfp_M62653_4                                    | 554  | 623  | 78,3 | tactccaattggcaatggccctgtccttctaccagacaaccatcacctgtccacacaacctgccctttcg  |
| gfp_M62653_7                                    | 554  | 623  | 78,3 | tactccaattggcaatggccttgtccttctaccagataaccatcacctgtccgcacaacctgccctttcg  |
| gfp_M62653_10                                   | 554  | 623  | 78,3 | tattetaattggcaatggcettgteettetaceagataaceateacetgteegeaeaacetgeeeetteg  |

| gfp_M62653_14    | 554 | 623 | 78,3 | tattctaattggcaatgaccttgtccttctactagataaccatcacccgtccgcacaacctgtcccttcg |
|------------------|-----|-----|------|------------------------------------------------------------------------|
| gfp_M62653_18    | 554 | 623 | 78,3 | tattetaateggeaatgaeettgttettetaetagataateateaeeegteegeataaeetgteeetteg |
| gfp_M62653_21    | 554 | 623 | 78,3 | tattetaategacaatgacettgttettetaetagataateateaecegeeegeataaeetgteeettea |
| kikA_AY046276    | 101 | 170 | 78,3 | caagctcaccggcgatagcggcggaagcgagtgtaacagtgctgaagctgctttcttcaatatcgttaaa |
| oriV_BR000038    | 76  | 145 | 78,3 | caatgacgacgttctcaatgccgaagtcattgccttgctcgccggcaagcgaaatcatggatgaaaacag |
| oriV_NC_001740   | 112 | 181 | 78,3 | gcgggggctggcggggtgttggaaaaatccatccatgattatctaagaataatccactaggcgcggttat |
| trfA_NC_004840   | 720 | 789 | 78,8 | ccggtttccttcacgttctacgagctttgccaggacttggactggtcaatcaa                  |
| rep_X73674       | 60  | 129 | 78,3 | tcgagatctacgatgcgttacctaagtacatttgggaccaaaagcgtgagcacgaagacctgtccaacgc |
| repE_AJ851089    | 51  | 120 | 78,3 | atcgtccagtcaaacgacctcactgaggcggcatatagtctctcccgggatcaaaaacgtatgctgtatc |
| AlienMT0000160li | -   | -   | 79,3 | agaacaaacagctggccgaatggttagtttactcagacagctccaacaaaca                   |
| AlienMT000017oli | -   | -   | 79,9 | tcaacgtcctgtaagttcatgctctgcttcaggaggttcagacggtatggatctacaaatcgacgagcga |
| AlienMT000018oli | -   | -   | 79,3 | agcgtcgtcatctcgctcataaagagcacgctgaatctcatcactgattcagattcaggatcctggttgt |
| AlienMT000019oli | -   | -   | 78,8 | agtggctgttgatgctttgggtgctgcaatgctggtcacaataatacttgatttgtggcgcatctttctg |

\* Die Klammern enthalten Gene, die zu einer Gruppe zusammengefasst wurden. Als Vertreter einer Gruppe dient das Gen, das am besten mit der Consensus-Sequenz des multiplen Alignments der Gene dieser Gruppe übereinstimmt.

Tabelle A2: Resistenzgen-spezifische Primerpaare und deren Charakteristika.

| <u> </u>             | Primer (S             | Schmelzter             | Schmelztemperatur °C |                |
|----------------------|-----------------------|------------------------|----------------------|----------------|
| Genname              | Linker Primer         | Rechter Primer         | Linker Primer        | Rechter Primer |
| aac(3)-Id AY458224   | ACTGGAAACGATGTTGCGTT  | CGATAGCGCCAATGACTTTT   | 58.35                | 58.35          |
| aac(6')-Im AF337947  | GACCAATTTATCGGTGAGCC  | TCATGTTCGGGAAGTTCCTT   | 60,4                 | 58,35          |
| aacA M86913          | GTGTAACACGCAAGCACGAT  | AGCCTCCGCGATTTCATAC    | 60.4                 | 60,16          |
| aacA1 AB113580       | AACCTTTGTTTCGGTCTGCT  | TCTGTTCCTAAAGCGATTCCA  | 58,35                | 58,66          |
| <br>aacA29b_AY139599 | CTCTGGTGGACTTGAGGAGC  | GGTCTGTTGATCGATGGCTT   | 64,5                 | 60,4           |
| aacA4_NC_006352      | TGACCTTGCGATGCTCTATG  | AAGAGCAACGTACGACTGGG   | 60,4                 | 62,45          |
| aacA7-AF263520       | AGGCCTGTTGAAACTACCGA  | CAAACCCTAGTGCTTCTCCG   | 60,4                 | 62,45          |
| aacC1_AY139604       | TCATCAATCCCCTCAAGCAT  | AAGTGCATCACTTCTTCCCG   | 58,35                | 60,4           |
| aacC2_S68058         | GCTAAACTCCGTTACCGCAT  | GAGAATGCCGTTTGAATCGT   | 60,4                 | 58,35          |
| aacC3_X55652         | ACAAGAACGTGGTCCGCTAC  | AACAGGTAAGCATCCGCATC   | 62,45                | 60,4           |
| aacC4_X01385         | GAGTTGATGGCAAAGGTTCC  | AAGGCTCTTCTCCTTGAGCC   | 60,4                 | 62,45          |
| aadA10_U37105        | ACGGCTCGATGAGAGTGTG   | AAGATGCCCGCAAGAATGT    | 62,32                | 58             |
| aadA12_AY665771      | TCAGAGGTGCTAAGCGTCATT | AGCCGAAGTTTCCAAAAGGT   | 60,61                | 58,35          |
| aadA4_AY138986       | ATCTTGCGATTTTGCTGACC  | TGTACCAAATGCGAGCAAGA   | 58,35                | 58,35          |
| aadA7_AY463797       | ACAAGCACTCAACGTCATCG  | GGAAGCTGAAACCTCCAAGA   | 60,4                 | 60,4           |
| aadA9_AJ420072       | CAAGACAGCTTTCACAGGCA  | AAGAAATCGAGCATCAGGGA   | 60,4                 | 58,35          |
| aadD_AB037420        | ATGGGGATGATGTTAAGGCT  | TCACTTCCACCTTCCACTCA   | 58,35                | 60,4           |
| acrB_M94248          | ATATCCTACGATTGCACCGC  | GGTACCCGTGGAGTCACTGT   | 60,4                 | 64,5           |
| acrD_U12598          | GGCAATCCTGTTGTGTCTGA  | ACATGAGATTATCGAGGCCG   | 60,4                 | 60,4           |
| ampC_J01611          | CCTCTTGCTCCACATTTGCT  | ACAACGTTTGCTGTGTGACG   | 60,4                 | 60,4           |
| aph(2')-Ib_AF337947  | TGTAGGTGACCCGGATAATGA | CCATAAATGATTTGGTCTATCG | 60,61                | 57,08          |
| aph2_U00004          | GATCTGGACGAAGAGCATCA  | CGCTATGTCCTGATAGCGGT   | 60,4                 | 62,45          |
| aphA-3_V01547        | GCTGGTGGGAGAAAATGAAA  | AAAGTGCAGGACCTTTGGAA   | 58,35                | 58,35          |
| aphA-6_X07753        | AAAATTGGTCAGTCGCCATC  | TTCAAACTGCTCATCCTGAAAA | 58,35                | 57,08          |
| aphA-7_M29953        | TTGGATAACAGAATTGCCGA  | CAACTCCACATCTTGCCAAA   | 56,3                 | 58,35          |

| aphA_NC_006352       | GTGATGGGATACAAATGGGC    | AACGAAGCTTACAACGGAGG    | 60,4  | 60,4  |
|----------------------|-------------------------|-------------------------|-------|-------|
| aph_AJ851089         | ATTCAACGGGAAACGTCTTG    | ACGCTACCTTTGCCATGTTT    | 58,35 | 58,35 |
| arr2_AF205943        | TTACAAGCAGGTGCAAGGAC    | GCTCCATCAAGGCTGAAAAG    | 60,4  | 60,4  |
| blaCMY-9_AB061794    | CAGTTGATGGAGCAGACCCT    | AGCTGGTCTTGATGCCGTAG    | 62,45 | 62,45 |
| blaIMP-9_AY033653    | TTTAGCGGAGTTAGCTATTGGC  | GCCAAGCTTCTAAATTTGCG    | 60,81 | 58,35 |
| cat_M11587           | AAACCGTAAAGCAAAATGGG    | TGAAAATGTTTCGGTCTGTTCA  | 56,3  | 57,08 |
| cat_M35190           | AGGATATAGACGCTTTTGGTGAA | TCCCAAACGTAAATATCGGC    | 59,2  | 58,35 |
| cat_M58515           | GATTCCTATTGCCAATTATTACA | TCCCATTCATTTACACTATCAAC | 55,64 | 57,42 |
| cat_S48276           | GCATGACCGTAAAGCTGGAT    | ACATCTCCGTGTCCTTTTGG    | 60,4  | 60,4  |
| cat2_AY509004        | TTTACCCGGATTGACCTGAA    | CGGAAACTGATTAACAGCCC    | 58,35 | 60,4  |
| catA_AJ851089        | TCAGCTGGATATTACGGCCT    | GTTTGCTCATGGAAAACGGT    | 60,4  | 58,35 |
| catB2_AY139601       | GCTTCTGACTGAGCAGGTGA    | GAGCAGAAGCTGCCGATAAT    | 62,45 | 60,4  |
| catB4_AF322577       | AAGGCAAGCTGCTTTCTGAG    | GATAAAGGAAGCCCCACTCC    | 60,4  | 62,45 |
| catB6_AJ223604       | GAGCAAGTGACTAACCGCAA    | GCAAAAGCTGCCGATGATTA    | 60,4  | 58,35 |
| catB7_AF036933       | GCGATGTCGAGCCCTATG      | AGTACACAGCAGTGGCATGG    | 62,18 | 62,45 |
| catB8_AF227506       | GGGGAACTTCTTTCTGAGCA    | CCCCGCTTCCTATAGAACAA    | 60,4  | 60,4  |
| catB9_AF462019       | GCATCGCAGTGATTGGATAA    | CACTACTGAACGACTGGCGA    | 58,35 | 62,45 |
| catIII_X07848        | CCGATTATTTTGCACCCATT    | TGTTACACAACTCTTGTAGCCGA | 56,3  | 60,99 |
| catP_U15027          | TCACACAAATAAAGGAAAAGGGA | ACTCAGTCCAAAGGCTGGAA    | 57,42 | 60,4  |
| cat-TC_U75299        | CCGAAACATAAAACAAGAAGGA  | CAGAAGTCCAAATACCAGAGAA  | 57,08 | 58,94 |
| cmlA1_NC_006388      | TAGTTGGCGGTACTCCCTTG    | GAATTGTGCTCGCTGTCGTA    | 62,45 | 60,4  |
| cmlB_AF034958        | TAATTGGCGGTATTCCCTTG    | AGCGTAAGCTGAATTGTGCC    | 58,35 | 60,4  |
| cmxA_AF024666        | CATTCGCAGTCGGTATGGT     | ATCCTGCGTTTGCGAGAG      | 60,16 | 59,9  |
| cmy-13_AY339625      | AAATCGTTATGCTGCGCTCT    | GATAATGGCAACGGCCATAC    | 58,35 | 60,4  |
| ctx-m26_AY157676     | CCATGTGCAGCACCAGTAAA    | TCAACTCCCCGAATGTCATC    | 60,4  | 60,4  |
| ctx-m27_AY156923     | CTGGAGAAAAGCAGCGGAG     | TGCTTTTGCGTTTCACTCTG    | 62,32 | 58,35 |
| ctx-m32_AJ557142     | CGTCACGCTGTTGTTAGGAA    | CGCTCATCAGCACGATAAAG    | 60,4  | 60,4  |
| ctx-m4_Y14156        | GGAGAAAAGTTCGGGAGGTC    | GCTTATCGCTCTCGCTCTGT    | 62,45 | 62,45 |
| dfr13-dfrXIII_Z50802 | AATCGGTCCGCATTTATCTG    | TTGGTAAGGGCTTGCCTATG    | 58,35 | 60,4  |
| dfr16_AY259085       | ACCAGATATTCCATGGAGCG    | CCATTACACCCTCATCATTCG   | 60,4  | 60,61 |

| dfr17_AY139588        | CAGAAAATGGCGTAATCGGT    | TGCATATTTGCGATTTGGAA    | 58,35 | 54,25 |
|-----------------------|-------------------------|-------------------------|-------|-------|
| dfrA19_AM234698       | TCGCTGTGGATTCTAAGTTGG   | CGCCATCCTTTTCTAACTGC    | 60,61 | 60,4  |
| dfrB2_DQ839391        | AAGTAGCGATGAAGCCAACG    | TAAATTTGCACTGAGCCTGG    | 60,4  | 58,35 |
| dfrD_Z50141           | AATCGGCAAGGATAACGACA    | AATGGGCAATTTCACAATCC    | 58,35 | 56,3  |
| dfrII_AY139601        | CAAGAAAGGTCGGAAATGGA    | GCAGTACCACCCGACAATCT    | 58,35 | 62,45 |
| dfrV_AY139589         | AAAAGCGAAAAACGGAGTGA    | GTCCAGGCTGAGCGAGTAAC    | 56,3  | 64,5  |
| dfrVI_Z86002          | CCGAGAATGGAGTAATTGGC    | CACAACATCAGGGTCATTCG    | 60,4  | 60,4  |
| dfrXII_AY139605       | TTTATCTCGTTGCTGCGATG    | AGGCTTGCCGATAGACTCAA    | 58,35 | 60,4  |
| dhfr_J03306           | CTTTGATTGCAGCTTTGGCT    | CATTGGGGATTGCGACTAAC    | 58,35 | 60,4  |
| dhfR_Z74777           | AAGGACAATCGTCTGCCTTG    | ATTACGCGTCAAAATCAGGG    | 60,4  | 58,35 |
| dhfr1_NC_006385       | ATGGAGTGCCAAAGGTGAAC    | TGGAAAGATCACTACGTTCTCA  | 60,4  | 58,94 |
| dhfrIX_X57730         | TGGCATGAACCAGAAGATTT    | GCAGTTCTTACTGCGATCTGG   | 56,3  | 62,57 |
| dhfrVIII_U10186       | GATCGAGCTTCATGCCATTT    | TAATTTGACGGGCAAGCTCT    | 58,35 | 58,35 |
| dhfrXV_Z83311         | TGCCAAAGGGGAACAATTAC    | TCGTCTTCAGATGATTTAGCG   | 58,35 | 58,66 |
| effJ-tet(35)_AF353562 | GCTTCTAGTTGGGGTGCGTA    | CATGTTCACGCATCTTACCG    | 62,45 | 60,4  |
| ereA2_AF512546        | CAGCCTCAAAAGCTGGAGTT    | ACATTCCAAACCAATCGCAT    | 60,4  | 56,3  |
| ereB_X03988           | TCTGCATTATGCCAACGGTA    | TCTGCTCACTTTGTGGGTTTT   | 58,35 | 58,66 |
| erm(A)_X03216         | ATCGGATCAGGAAAAGGACA    | TTTTGGGAAGGAAAATTTTAGA  | 58,35 | 53,36 |
| erm(TR)_AF002716      | CATCTAAAAAGCATGTAAAGGAA | TTCTGAAAAGGTTCAACTGCTTT | 55,64 | 57,42 |
| ermA_X51472           | ATGTCTGCATACGGACACGG    | ACTTCAACTGCCGTTATCGC    | 62,45 | 60,4  |
| ermB_M11180           | AGCCATGCGTCTGACATCTA    | CTGTGGTATGGCGGGTAAGT    | 60,4  | 62,45 |
| ermD_M29832           | AATTGTGGATCGGGCAAATA    | TTGAATGCTGTGCCGTTTTA    | 56,3  | 56,3  |
| ermF_M14730           | TTTTCTGGGAGGTTCCATTG    | TTTCCGAAATTGACCTGACC    | 58,35 | 58,35 |
| fexA_AJ549214         | CCGATTTATGGTCGAATCTCA   | TGGGAAAACCTTCGAAATTG    | 58,66 | 56,3  |
| floR_AF118107         | TCGTCATCTACGGCCTTTTC    | CTTGACTTGATCCAGAGGGC    | 60,4  | 62,45 |
| ges-5_AY494717        | ACGCACTATTACTGGCAGGG    | GTTGAGCACATTGCAAAACG    | 62,45 | 58,35 |
| gfp_M62653            | CAACATTGAAGATGGAAGCG    | CATGCCATGTGTAATCCCAG    | 58,35 | 60,4  |
| imp-13_AJ550807       | AGGAGCGGCTTTACCTGATT    | CGCTCCACAAACCAATTGAC    | 60,4  | 60,4  |
| imp-16_AJ584652 (1)   | TGGAAATCTCGATGATGCAA    | TTTTTACTTTCTTTTAGCCCTTT | 56,3  | 53,86 |
| imp-16_AJ584652 (2)   | TGGAAATCTCGATGATGCAA    | ACTTGGCTGTGATGGTTTTT    | 56,3  | 56,3  |

| imp-2_AJ243491   | CGGTTTGGTGGTTCTTGTAAA   | ATTCAGATGCATACGTGGGA    | 58,66 | 58,35 |
|------------------|-------------------------|-------------------------|-------|-------|
| imp-5_AF290912   | GTGGAACGCGGCTATAAAAT    | TAGCCAATAGCTAGCTCCGC    | 58,35 | 62,45 |
| kikA_AY046276    | TTTATCTTCCTGCCAGCCAT    | CCGGGCATTCATTAAGAAAA    | 58,35 | 56,3  |
| kpc-3_AF395881   | CAGCTCATTCAAGGGCTTTC    | GGCGGCGTTATCACTGTATT    | 60,4  | 60,4  |
| luc_D25416       | GGGATGGATACACTCTGGTGA   | AGATCACCCGCAACTTCATC    | 62,57 | 60,4  |
| mecA_AB037671    | AAAAAGATGGCAAAGATATTCAA | TTCTTCGTTACTCATGCCATACA | 53,86 | 59,2  |
| mefA_AJ715499    | GGAGCTACCTGTCTGGATGG    | CAACCGCCGGACTAACAATA    | 64,5  | 60,4  |
| mefE_AE008470    | AGCCTTTTCTCCGGCATTAT    | CCTCTTCAATAGCGTGCTGA    | 58,35 | 60,4  |
| mefE_AF274302    | CCTGCAAATGGCGATTATTT    | AATAGCAAGCACTGCACCAG    | 56,3  | 60,4  |
| mel_DQ839391     | GGTGATAACGGAGCAGGAAA    | GCCACTCATTGTGTCGTTTT    | 60,4  | 58,35 |
| mexB_L11616      | GACCAAGGCGGTGAAGAAC     | AACACCTGGAAGTCACCGAC    | 62,32 | 62,45 |
| mexD_NC_003430   | GCAGAACCGCTTGAAGAAAG    | GGATCTCGGGATTGATGTTG    | 60,4  | 60,4  |
| mexD_U57969      | TCAACGGTCTGGGTAACTCC    | GTCGATCAACAGGCGCAGT     | 62,45 | 62,32 |
| mexF_X99514      | GACGTGGTCAACGCCATC      | GAAGCTGTGCTTCAGCTCG     | 62,18 | 62,32 |
| mexI_AE004837    | GATCATCCTGATCACCGTGC    | CGTGGAGTTGCAGTTCGTT     | 62,45 | 60,16 |
| mexY_AB015853    | GCCCTCTACGAAAGCTGGTC    | TTCCTGGTAATGGTCCTTGG    | 64,5  | 60,4  |
| mph(A)_NC_006385 | AGTTCGTGGTGAACGACAAG    | AGTCGATCATCCCGCTGAC     | 60,4  | 62,32 |
| mph(B)_AM260957  | GATGATCTCATCGCCTACCC    | CGGCATCGATACTGAGATTG    | 62,45 | 60,4  |
| mph(BM)_AF167161 | TCGACATGCGACCATGATAC    | TTTCACCTCCAGCTTTACCG    | 60,4  | 60,4  |
| mphB_D85892      | TGTGCCAGCAGGTACGATAG    | CCATACGCTGCTTCATTGAC    | 62,45 | 60,4  |
| mph_DQ839391     | TGTTGCTTACGGACAAAATGA   | TGAAATTCTCCAATCAGGAACC  | 56,71 | 58,94 |
| msr(A)_X52085    | CAAATGGCACAAGCATCATC    | TGTGGTTTTTCAACTTCTTCCA  | 58,35 | 57,08 |
| nps-1_NC_006388  | TTCTGGCCTGTAGCCTCTGT    | TGTTGAGCACCTTGAACGTC    | 62,45 | 60,4  |
| nps-2_NC_003430  | GGACCATCGTCATCGAGTCT    | ATTCGCAATCGAATACTGGG    | 62,45 | 58,35 |
| orf11_NC_006385  | AGATCGTCTTGTCATTCGCC    | GGAACACCGGGTCTATTGAA    | 60,4  | 60,4  |
| oriV_BR000038    | CGCTTGGGATTCCAGAATAG    | TCTACAAAGGCTCGGAATGC    | 60,4  | 60,4  |
| oriV_NC_001740   | CACGAACCCCTGCAATAACT    | GAATAGACCAGCTATCCGGC    | 60,4  | 62,45 |
| oxa-10_AY115475  | AGAGGCTTTGGTAACGGAGG    | TGGATTTTCTTAGCGGCAAC    | 62,45 | 58,35 |
| oxa-12_U10251    | TACCCGAAGAAACTGGATGG    | AGTTTCTTGAGTTGCGCGG     | 60,4  | 60,16 |
| oxa-18_U85514    | CCATGAGCGGAAAAAGACAT    | CCAAAGGCAGTTTGAACGTC    | 58,35 | 60,4  |

| oxa-1_AY139600       | TATCTACAGCAGCGCCAGTG   | CGCATCAAATGCCATAAGTG   | 62,45 | 58,35 |
|----------------------|------------------------|------------------------|-------|-------|
| oxa-20_AF024602      | TGAGAGCTCTAATTGGGGGA   | AAGGGTATGCGGAATCTTGA   | 60,4  | 58,35 |
| oxa-22_AF064820      | CTCAAAGATGAGCACACCCC   | ACATCCATGTTGCCGTAGC    | 62,45 | 60,16 |
| oxa-27_AF201828      | TAAATGGAAGGGCGAGAAAA   | ACCTGCTGTCCAATTTCAGC   | 56,3  | 60,4  |
| oxa-29_AJ400619      | TGATGCATTTCACTATGGCAA  | GCTTTGGGATTCACGGATAG   | 56,71 | 60,4  |
| oxa-2_NC_007502      | TCTTCGCGATACTTTTCTCCA  | ATCGCACAGGATCAAAAACC   | 58,66 | 58,35 |
| oxa-40_AF509241      | TGAGATTTTCAAATGGGATGG  | TTTCCAAAATTAACCCGCTTT  | 56,71 | 54,76 |
| oxa-45_AJ519683      | CAATGTCGACGTTCAAGGTG   | CAATTGCTGCGAATACCAGA   | 60,4  | 58,35 |
| oxa-46_AF317511      | ATGGCAATCCGATTCTTCAC   | ACGTTCGTCTGCAATAACGA   | 58,35 | 58,35 |
| oxa-48_AY236073      | GCGAACCAAGCATTTTTACC   | TATGATCGCGATTCCAAGTG   | 58,35 | 58,35 |
| oxa-5_X58272         | GCACGTGCATCTACAGCCTA   | AAACCTGTATAGCGCCCCTT   | 62,45 | 60,4  |
| oxa-50_AY306130      | CGAACGTACCGGTCTACCA    | GGAATGGCAATTCTCCCTG    | 62,32 | 60,16 |
| oxa-54_AY500137      | CCAATAATCTTAAGCGGGCA   | GGCACGACCGAGTATTTCAT   | 58,35 | 60,4  |
| oxa-55_AY343493      | TGAGCAGACCAAGGTCAGTG   | AGGTGGAAGCCGGAATAAAG   | 62,45 | 60,4  |
| oxa-58_AY665723      | GCAATTGCCTTTTAAACCTGA  | CTGCCTTTTCAACAAAACCC   | 56,71 | 58,35 |
| oxa-60_AF525303      | GACATGGCGTTACCCGAG     | GCTTCTTCGAAAGCGGAAAT   | 62,18 | 58,35 |
| oxa-61_AY587956      | AAATTTAGTGTTTGGGCAAGA  | TCACACCACTATCAAGTGCAA  | 54,76 | 58,66 |
| oxa-75_AY859529      | CGCTTCCATTTAGCCAAAAA   | AAGTTAAGGGAGAACGCTACAA | 56,3  | 58,94 |
| oxa-9_M55547         | GCTGCATATGTTGGTGTTCG   | AAAGACGAGCACGGAGACAC   | 60,4  | 62,45 |
| per-1_Z21957         | ACTGCCTCGACGCTACTGAT   | TTTGCATTGGGAATTTTTCA   | 62,45 | 52,2  |
| per-2_X93314         | GTTTTCACCGCTTCTGCTCT   | AAACACACTTTGCATCGGAA   | 60,4  | 56,3  |
| qacB_AF053771        | CACAATGGTTACAGGTTGTGG  | AATGGCTGCAGTTCCAATTC   | 60,61 | 58,35 |
| qacD_M37888          | AGGAACAATAATTTCATTTGGA | CGAAACTACGCCGACTATGA   | 53,36 | 60,4  |
| qacEDelta1_NC_006385 | GGCTTTACTAAGCTTGCCCC   | CATACCTACAAAGCCCCACG   | 62,45 | 62,45 |
| qacF_NC_007502       | ATCGTTGCAGAGGTGATCG    | ACCCATCAGTGTGATGAGCA   | 60,16 | 60,4  |
| qacF_AY139598        | TGGCTGTTTCAATCTTTGGC   | GCCCATACAGCGTAAGCAAT   | 58,35 | 60,4  |
| qacG_Y16944          | TTTCGTTTGGAATTTGCTTTT  | TCAATGGCTTTCTCCAAATACA | 52,8  | 57,08 |
| qacG2_AJ609296       | TGGTTATTTCTGGCTACGGC   | TTTGAGTGTCAGCGACAGGA   | 60,4  | 60,4  |
| qacH_Y16945          | TCTTCAGACGGTTTCTCAAAA  | TGTGATGATCCGAATGTGTTT  | 56,71 | 56,71 |
| qnr_AB187515         | CATATCGGCACCACAACTTTT  | CGAAGATCTGCGACATCAAA   | 58,66 | 58,35 |

| qnrA3_DQ058661     | AAGTTTTTCAGCAAGAGGATTTC | CATAGCTGAAGTGGCACCCT    | 57,42 | 62,45 |
|--------------------|-------------------------|-------------------------|-------|-------|
| qnrB1_DQ351241     | AAATATGGCTCTGGCACTCG    | CTTTCAGCATCGCACGACTA    | 60,4  | 60,4  |
| qnrB4_DQ303921     | AGTCGCGCTAACCTGAAAGA    | GTGCGGGTGGTGATCATATT    | 60,4  | 60,4  |
| rep_X73674         | CGGCCAAGAAAGACGACTAC    | ATGGCTGGTTTCACCTTCAC    | 62,45 | 60,4  |
| repE_AJ851089      | CGGAAACAGCGGTTATCAAT    | TAGCAACATGGATCTCGCAG    | 58,35 | 60,4  |
| shv-34_AY036620    | GCGTTATTTTCGCCTGTGTA    | AGGTGCTCATCATGGGAAAG    | 58,35 | 60,4  |
| strA- NC_004840    | CTCGATCTTTTGGCTCGTGT    | CAATCATGAGTGCCAAATCG    | 60,4  | 58,35 |
| strB- NC_004840    | GCCTGTTTTTCCTGCTCATT    | CGCAGTTCATCAGCAATGTC    | 58,35 | 60,4  |
| sul3_AY316203      | ACCACCGATAGTTTTTCCGA    | TGCCTTTTTCTTTTAAAGCC    | 58,35 | 54,25 |
| sulII_AJ851089     | GACAGTTATCAACCCGCGAC    | GTCTTGCACCGAATGCATAA    | 62,45 | 58,35 |
| sulI_NC_006388     | GACGAGATTGTGCGGTTCTT    | GAGACCAATAGCGGAAGCC     | 60,4  | 62,32 |
| TEM-1_AJ851089     | CATTTTCGTGTCGCCCTTAT    | GGGCGAAAACTCTCAAGGAT    | 58,35 | 60,4  |
| tet(30)_AF090987   | CTGTTTGTTCTGCCGGAAAG    | CCATAGAGCACCCAGATCGT    | 60,4  | 62,45 |
| tet(31)_AJ250203   | AATAAGCGGGCGTTGTTAGA    | TCCTAAATGGATTTTTGCCG    | 58,35 | 56,3  |
| tet(32)_AJ295238   | CATTATAGATACGCCAGGCCA   | TGTTCATTTTCTGAAGCGCA    | 60,61 | 56,3  |
| tet(34)_AB061440   | TGCTGAAAAACAGATGCCAG    | TAACCTTCGCCATCACCTTC    | 58,35 | 60,4  |
| tet(36)_AJ514254   | CGATGGATATCGAAAAACGAA   | TTTGAGCTTGAATGCCCTCT    | 56,71 | 58,35 |
| tet(37)_AF540889   | TTGAAAAGGTGGTGAACCTG    | CGCCCCATCCTAAATAAAT     | 58,35 | 58,35 |
| tet(38)_AY825285   | TTTCTGTAGCCATTGCTGATG   | CGCCATAAATAAATAGTGTGCGT | 58,66 | 59,2  |
| tet(M)_M21136      | AGTGCACTGTTGCAAGAAAAG   | GAAACCGAGCTCTCATACTGC   | 58,66 | 62,57 |
| tet(M)_M85225      | AGTGCACTGTTGCAAGAAAAG   | GAAACCGAGCTCTCATACTGC   | 58,66 | 62,57 |
| tet(M)_X04388      | GCTTATTCCGGGGGAAATTGT   | CGGGTCACTGTCGGAGATT     | 58,35 | 62,32 |
| tet(M)_X90939      | GCTTATTCCGGGGGAAATTGT   | CGGGTCACTGTCGGAGATT     | 58,35 | 62,32 |
| tet(O)_Y07780      | GTGCCATCCTTGAGGAAAAA    | TGCTTTCATACTGCACTCCG    | 58,35 | 60,4  |
| tet(S)_L09756      | CAAGGATTGTACGGTTGGAAA   | TTTCGAAGCTAAGATATGGCTC  | 58,66 | 58,94 |
| tet(T)_L42544      | AACGGATTCGATGGAACTTG    | GGACTTGAATTCCTTCTTTTGC  | 58,35 | 58,94 |
| tet(U)-ORF1_U01917 | GCAGCTAAGACGTGGCAAA     | TGCTTCAGCAAATTCCGATA    | 60,16 | 56,3  |
| tet(X)_M37699      | CGTTGGACTGACTATGGCAA    | CCCATTGGTAAGGCTAAGTCA   | 60,4  | 60,61 |
| tet(Y)_AF121000    | CCGATCTTGCCTACCCTTCT    | GTCCGAAACGGTCAGAGAGT    | 62,45 | 62,45 |
| tet_Q_L33696       | GCTCACATTGATGCAGGAAA    | CGTAGAAGCCCGGACAGTAA    | 58,35 | 62,45 |

| tet_W_AJ222769    | GTCGAAAAAGGGACAACGAG  | CTAAAACAGCCAAAGAGCGG   | 60,4  | 60,4  |
|-------------------|-----------------------|------------------------|-------|-------|
| tetA(33)_AJ420072 | AGACCCGTCCTGATTCCC    | AGATTCCAACTTCGACGGG    | 62,18 | 60,16 |
| tetA(39)_AY743590 | TATTTCTGGATGCTGTTGGG  | GCTCCAAGGATAGGTGCAAA   | 58,35 | 60,4  |
| tetA(J)_AF038993  | TATTGGGTGCCGCATTAGAT  | TAAACCCACACCAAATGCAC   | 58,35 | 58,35 |
| tetA(Y)_AF070999  | GCAGAGCAAACAGCATTTCA  | TCAATCGTGGCACCTAAAAA   | 58,35 | 56,3  |
| tetA_L06940       | GGGAGTTTGTTGGAAAGGCT  | TGCCATTAATGCGTAGTCCA   | 60,4  | 58,35 |
| tetA_NC_004840    | CCTGATTATGCCGGTGCT    | TGGCGTAGTCGACAGCAG     | 59,9  | 62,18 |
| tetA_NC_006388    | CTTGGTTATGCCGGTACTGC  | GCGTAGTCGATAGTGGCTCC   | 62,45 | 64,5  |
| tetA_AJ851089     | TTGCTTCGGAAGATATCGCT  | ATCCAAAGCGCACTTGAAAA   | 58,35 | 56,3  |
| tetB(P)_L20800    | CACCTAAAGGTTTTGGAGCG  | TGGCAATGACCCTACTGAAA   | 60,4  | 58,35 |
| tetBSR_D12567     | GCTTAGGGTCGATCATTGGA  | AAATGCTTTCCCCCTGTTCT   | 60,4  | 58,35 |
| tetD_L06798       | AGACCGGTGCTGCTGTTATC  | GTGCTGTCCGCCACTACC     | 62,45 | 64,46 |
| tetG_AF133139     | GGTGCTTCTGGCTTCTCTTG  | CAATGGTTGAGGCAGCTACA   | 62,45 | 60,4  |
| tetH_AJ245947     | CAACCCATTACGGTGTGCTA  | AAGTGTGGTTGAGAATGCCA   | 60,4  | 58,35 |
| tetK_U38428       | TTGAGCTGTCTTGGTTCATTG | AAAGGCTTTGCCTTGTTTTT   | 58,66 | 54,25 |
| tetL_U17153       | TCGGTAATTGGGTTTGTTGG  | CCCATGGCTACTATCGATCC   | 58,35 | 62,45 |
| tetV_AF030344     | ATCCTGGCGTTCTTCGGTAT  | GTGACGCCGATGACGAAC     | 60,4  | 62,18 |
| tla-1_AF148067    | GACGCTACCGTTCAGCTCTT  | GTGGCAGCAGTAATGCCTTT   | 62,45 | 60,4  |
| tla-2_NC_006385   | TCGTGCTTGCTGTTTTGAAC  | CGTTGTTGTCGCTTTGAGTG   | 58,35 | 60,4  |
| trfA_NC_004840    | GACGACGAGCTGGTATTCG   | GATGCGTTGGGATGAGAACT   | 62,32 | 60,4  |
| veb-1_AF010416    | CGATTGCTTTAGCCGTTTTG  | CAACCAATATTGTCGCTCTCTG | 58,35 | 60,81 |
| vgb(B)_AF015628   | CGGATAACGCACTTTGGTTC  | TTCGACCTATTTTGTTGCCC   | 60,4  | 58,35 |
| vgh(A)_M20129     | TCTGGGGGGAAATTACCGAAT | AACAAATGCCATGTGGTTCA   | 58,35 | 56,3  |
| vim-4_AY509609    | TCCGACTTTACCAGATTGCC  | TTTCAATCTCCGCGAGAAGT   | 60,4  | 58,35 |
| vim-7_AJ536835    | CGCAGCTTTCTGGTTGGTAT  | CGTGTCACCGAGTTTCTGAG   | 60,4  | 62,45 |

| Name *                       | Gene Product                                       | Amplicon<br>size [bp] | Resistance to / Function #               | Accession No. |
|------------------------------|----------------------------------------------------|-----------------------|------------------------------------------|---------------|
|                              |                                                    |                       |                                          |               |
| aacA, aadB                   | aminoglycoside 6'-N-acetyltransferase              | 197                   | Km, Tob, Ak                              | M86913        |
| aacA1                        | aminoglycoside 6'-N-acetyltransferase              | 200                   | Gm, Km, Tob, Neo                         | AB113580      |
| aacA4                        | aminoglycoside 6'-acetyltransferase                | 196                   | Ak                                       | AJ744860      |
| aacA7                        | aminoglycoside acetyltransferase-6' type I         | 175                   | Gm, Tob, Km                              | AF263520      |
| aacA29b                      | aminoglycoside-6'-N-acetyltransferase              | 170                   | Ak, Km                                   | AY139599      |
| aacC1                        | aminoglycoside-3N-acetyltransferase                | 130                   | Gm                                       | AY139604      |
| aacC2, aacC3                 | aminoglycoside-(3)-N-acetyltransferase             | 148                   | Gm                                       | S68058        |
| aacC4                        | aminoglycoside-(3)-acetyltransferse IV             | 147                   | Gm                                       | X01385        |
| aac(3)-Id                    | 3'-N-aminoglycoside acetyltransferase              | 178                   | Gm                                       | AY458224      |
| aac(6')-Im                   | 6'-aminoglycoside N-acetyltransferase              | 194                   | Tob, Ak, Km                              | AF337947      |
| aadA4, aadA5                 | streptomycin 3"-adenylyltransferase                | 198                   | Sm, Sp                                   | AY138986      |
| aadA7                        | aminoglycoside (3")(9) adenylyltransferase         | 187                   | Sm, Sp                                   | AY463797      |
| aadA9                        | streptomycin 3"-adenylyltransferase                | 184                   | Sm, Sp                                   | AJ420072      |
| aadA10, aadA6/aadA10         | aminoglycoside (3")(9) adenylyltransferase         | 198                   | Sm, Sp                                   | U37105        |
| aadA12, aadA1, aadA2, aadA8, | Put. streptomycin 3"-adenylyltransferase           | 186                   | putative Sm, Sp                          | AY665771      |
| aadA11, aadA13, aadA23       |                                                    |                       |                                          |               |
| aadD                         | kanamycin-nucleotidyltransferase                   | 153                   | Km                                       | AB037420      |
| aph                          | aminoglycoside 3'-phosphotransferase               | 173                   | Km, Neo                                  | AJ851089      |
| aphA                         | 3'-aminoglycoside phosphotransferase               | 198                   | Km                                       | AJ744860      |
| aphA-3                       | 3'5"-aminoglycoside phosphotransferase of type III | 139                   | Km                                       | V01547        |
| aphA-6                       | 3'-aminoglycoside phosphotransferase               | 192                   | Km, Ak                                   | X07753        |
| aph2                         | aminoglycoside-3'-O-phosphotransferase             | 198                   | Km, Neo                                  | U00004        |
| aph(2')-Ib                   | aminoglycoside phosphotransferase                  | 175                   | Km                                       | AF337947      |
| strA                         | aminoglycoside 3'-phosphotransferase               | 196                   | Sm                                       | NC_004840     |
| strB                         | aminoglycoside-6-phosphotransferase                | 150                   | Sm                                       | NC_004840     |
| ctx-m4                       | class A β-lactamase                                | 155                   | Amp, Ctx, Cxm, Atm                       | Y14156        |
| ctx-m27                      | class A β-lactamase                                | 158                   | Caz, Ctx, Amo, Tic, Prl, Kf,             | AY156923      |
|                              |                                                    |                       | Cxm, Cpo, Atm                            |               |
| ctx-m32                      | class A β-lactamase                                | 156                   | Amo, Ctx, Caz, Fep, Prl, Kf, Fox,<br>Cxm | AJ557142      |
| ges-3                        | class A extended spectrum $\beta$ -lactamase       | 181                   | Titeracillin, Prl, CAZ, CTX, Atm,<br>Ipm | AY494717      |

Table A3: Mittels PCR detektierte Resistenzgene in Gesamt-Plasmid-DNA aus Belebtschlammbakterien.

| per-2                 | class A extended spectrum β-lactamase | 198 | Oxyiminocephalosporines, Atm,<br>Cft          | X93314    |
|-----------------------|---------------------------------------|-----|-----------------------------------------------|-----------|
| shv-34                | class A β-lactamase                   | 200 | CAZ, CTX                                      | AY036620  |
| tem-1                 | class A β-lactamase                   | 167 | Amp, Pen-G                                    | AJ851089  |
| tla-2                 | class A extended spectrum β-lactamase | 186 | Amo, Tic, Caz, Kf, Cxm, Fox,<br>Ctx, Fep, Atm | NC_006385 |
| veb-1                 | class A extended spectrum β-lactamase | 190 | cephalosporines, Atm                          | AF010416  |
| imp-2, imp-5          | class B metallo β-lactamase           | 200 | Amp, CTX, Fep                                 | AJ243491  |
| imp-9, imp-11         | class B metallo β-lactamase           | 178 | β-lactams                                     | AY033653  |
| imp-13, imp-2         | class B metallo β-lactamase           | 198 | Cxm, Caz, Ctx, Cro, Fep, Amp                  | AJ550807  |
| ampC                  | class C β-lactamase, cephalosporinase | 189 | Pen, cephalosporines                          | J01611    |
| сту-9, сту-10         | class C β-lactamase                   | 169 | β-lactams                                     | AB061794  |
| сту-13, сту-5         | class C β-lactamase                   | 150 | β-lactams                                     | AY339625  |
| bla <sub>NPS-1</sub>  | class D β-lactamase                   | 188 | Amo, azlocillin, Cec, cefazolin,<br>Cfp, Prl  | NC_003430 |
| bla <sub>NPS-2</sub>  | class D β-lactamase                   | 192 | Amp                                           | NC_006388 |
| oxa-1                 | class D β-lactamase                   | 199 | β-lactams                                     | AY139600  |
| oxa-2, oxa-21, oxa-53 | class D β-lactamase                   | 177 | β-lactams                                     | NC_007502 |
| oxa-5                 | class D β-lactamase                   | 175 | β-lactams                                     | X58272    |
| oxa-9                 | class D β-lactamase                   | 162 | β-lactams                                     | M55547    |
| oxa-10, oxa-56        | class D β-lactamase                   | 191 | β-lactams                                     | AY115475  |
| oxa-12                | class D β-lactamase                   | 188 | β-lactams                                     | U10251    |
| oxa-22                | class D β-lactamase                   | 200 | benzylpenicillin, Ob                          | AF064820  |
| oxa-27                | class D β-lactamase                   | 180 | β-lactams                                     | AF201828  |
| oxa-40                | class D β-lactamase                   | 168 | Amo, Tic, Caz, Fep, Cpo, Prl, Kf,<br>Cxm, Ipm | AF509241  |
| oxa-46, oxa           | class D β-lactamase                   | 150 | Amp, Car, Mez, Kf                             | AF317511  |
| oxa-48                | class D β-lactamase                   | 145 | Amo, Tic, Fep, Ipm, Cpo, Prl,<br>Ctx          | AY236073  |
| oxa-50                | class D β-lactamase                   | 198 | Amp, Tic, Ctx, Prl, Kf, Cxm                   | AY306130  |
| oxa-58                | class D $\beta$ -lactamase            | 152 | Amo, Tic, Cpo, Prl, Ipm, Kf                   | AY665723  |
| oxa-75                | class D β-lactamase                   | 181 | Amp, Prl                                      | AY859529  |
| cmlA1, cmlA5          | chloramphenicol efflux protein        | 137 | Cm                                            | NC_006388 |
| cmlB                  | hydrophobic polypeptid                | 147 | Cm                                            | AF034958  |
| cmxA                  | chloramphenicol export protein        | 186 | Cm                                            | AF024666  |
| fexA                  | florfenicol/chloramphenicol exporter  | 198 | Cm, Ffc                                       | AJ549214  |

| floR, cmlA          | efflux protein                                                       | 188 | Cm, Ffc                                   | AF118107  |
|---------------------|----------------------------------------------------------------------|-----|-------------------------------------------|-----------|
| cat                 | chloramphenicol acetyltransferase                                    | 173 | Cm                                        | M11587    |
| cat                 | chloramphenicol acetyltransferase                                    | 162 | Cm                                        | M35190    |
| cat                 | chloramphenicol acetyltransferase                                    | 195 | Cm                                        | S48276    |
| cat                 | chloramphenicol acetyltransferase                                    | 163 | Cm                                        | M58515    |
| cat2, catII, cmlA   | chloramphenicol acetyltransferase                                    | 192 | Cm                                        | AY509004  |
| catIII              | chloramphenicol acetyltransferase                                    | 150 | Cm                                        | X07848    |
| catA                | chloramphenicol acetyltransferase                                    | 186 | Cm                                        | AJ851089  |
| catB2               | chloramphenicol acetyltransferase                                    | 156 | Cm                                        | AY139601  |
| catB4               | chloramphenicol acetyltransferase                                    | 188 | Cm                                        | AF322577  |
| catB7               | chloramphenicol acetyltransferase                                    | 152 | Cm                                        | AF036933  |
| catB8               | chloramphenicol acetyltransferase                                    | 175 | Cm                                        | AF227506  |
| cat-TC, cat         | chloramphenicol acetyltransferase                                    | 194 | Cm                                        | U75299    |
| qnrA3, qnr          | pentapeptide family, DNA-gyrase and topoisomerase IV protection      | 168 | Nal                                       | DQ058661  |
| qnrB1, qnrB2, qnrB5 | pentapeptide family, DNA-gyrase and topoisomerase IV protection      | 191 | Cip                                       | DQ351241  |
| qnrB4               | pentapeptide family                                                  | 158 | quinolones                                | DQ303921  |
| qnr, qnrS2          | quinolon resistance determinant                                      | 175 | Cip, Nor, Nal                             | AB187515  |
| ere(A2), ereA       | erythromycin esterase type I                                         | 177 | Em                                        | AF512546  |
| ereB                | erythromycin esterase type II                                        | 158 | Em                                        | X03988    |
| <i>mph</i> (B)      | macrolide phosphotransferase                                         | 199 | Azi, Cla, Em, Rox, Tyl                    | AM260957  |
| mph(A)              | macrolide 2'-phosphotransferase I                                    | 153 | Azi, Cla, Em, Rox                         | NC_006385 |
| mph                 | macrolide 2'-phosphostransferase                                     | 200 | Em                                        | DQ839391  |
| mph(B)              | macrolide 2'-phosphotransferase II                                   | 200 | macrolides                                | D85892    |
| mph(BM)             | macrolide 2'-phosphotransferase II                                   | 200 | macrolides                                | AF167161  |
| erm(A)              | rRNA adenin N-6-methyltransferase                                    | 185 | Em                                        | X51472    |
| erm(B)              | rRNA adenin N-6-methyltransferase                                    | 193 | Em                                        | M11180    |
| erm(F)              | rRNA adenin N-6-methyltransferase                                    | 323 | macrolide-lincosamide-<br>streptogramin B | M14730    |
| mef(A)              | macrolide-efflux protein, MFS permease                               | 179 | Em                                        | AJ715499  |
| mef(E), mef(I)      | macrolide-efflux protein, MFS permease                               | 199 | Em                                        | AF274302  |
| mel                 | macrolide efflux protein, macrolide-specific ABC-type efflux carrier | 198 | Azi, Cla, Em                              | DQ839391  |
| msr(A)              | erythromycin resistance ATP-binding protein MsrA                     | 158 | Em                                        | X52085    |
| arr2                | put. rifampin ADP-ribosyl transferase                                | 140 | Rif                                       | AF205943  |
| sull                | dihydropteroate synthetase                                           | 185 | Sul                                       | NC_006388 |
| sulII               | dihydropteroate synthetase                                           | 147 | Sul                                       | AJ851089  |
| sulIII              | dihydropteroate synthetase                                           | 199 | Sul                                       | AY316203  |
| dfrII               | dihydrofolate reductase                                              | 156 | Тр                                        | AY139601  |

| dfrV            | dihydrofolate reductase                                                                | 180 | Тр                               | AY139589  |
|-----------------|----------------------------------------------------------------------------------------|-----|----------------------------------|-----------|
| dfr13 = dfrXIII | dihydrofolate reductase                                                                | 174 | Тр                               | Z50802    |
| dfr16           | dihydrofolate reductase                                                                | 173 | Тр                               | AY259085  |
| dfr17, dfrVII   | dihydrofolate reductase                                                                | 152 | Тр                               | AY139588  |
| dfrA19          | dihydrofolate reductase                                                                | 165 | Тр                               | AM234698  |
| dfrB2           | dihydrofolate reductase                                                                | 198 | Тр                               | AY139592  |
| dfrD            | dihydrofolate reductase                                                                | 194 | Тр                               | Z50141    |
| dhfr1           | dihydrofolate reductase                                                                | 169 | Тр                               | AJ698325  |
| dhfrVIII        | dihydrofolate reductase                                                                | 169 | Тр                               | U10186    |
| dhfrXV          | dihydrofolate reductase                                                                | 197 | Тр                               | Z83311    |
| tet(A)          | MFS tetracycline efflux                                                                | 200 | Tc                               | NC_004840 |
| tet(A)          | MFS tetracycline efflux                                                                | 198 | Тс                               | NC_006388 |
| tetA(C)         | MFS tetracycline efflux                                                                | 187 | Тс                               | AJ851089  |
| tetA(E)         | MFS tetracycline efflux                                                                | 176 | Тс                               | L06940    |
| tet(D)          | MFS tetracycline efflux                                                                | 155 | Тс                               | L06798    |
| tet(G)          | MFS tetracycline efflux                                                                | 140 | Тс                               | AF133139  |
| tet(H)          | MFS tetracycline efflux                                                                | 164 | Тс                               | AJ245947  |
| tet(L)          | MFS tetracycline efflux                                                                | 176 | Тс                               | U17153    |
| tet(Y)          | MFS tetracycline efflux                                                                | 146 | Тс                               | AF070999  |
| tet(39)         | MFS tetracycline efflux                                                                | 154 | Тс                               | AY743590  |
| tet(U)          | replication                                                                            | 198 | Low level Tc                     | U01917    |
| tet(X)          | inactivation of tetracycline                                                           | 186 | Тс                               | M37699    |
| tetB(P)         | GTP-binding elongation factor protein, TetM/TetO family                                | 143 | Тс                               | L20800    |
| tet(M)          | GTP-binding elongation factor protein, TetM/TetO family                                | 197 | Тс                               | M21136    |
| tet(M)          | GTP-binding elongation factor protein, TetM/TetO family                                | 197 | Тс                               | M85225    |
| tet(M)          | GTP-binding elongation factor protein, TetM/TetO family                                | 198 | Тс                               | X04388    |
| tet(M)          | GTP-binding elongation factor protein, TetM/TetO family                                | 198 | Тс                               | X90939    |
| tet(O)          | GTP-binding elongation factor protein, TetM/TetO family                                | 189 | Тс                               | Y07780    |
| tet(S)          | GTP-binding elongation factor protein, TetM/TetO family                                | 172 | Тс                               | L09756    |
| <i>tet</i> (32) | GTP-binding elongation factor protein, TetM/TetO family                                | 149 | Тс                               | AJ295238  |
| tetR(31)        | tetracycline repressor protein                                                         | 168 | regulates expression of TetA(31) | AJ250203  |
| qacB            | permease of the MFS family,                                                            | 164 | multidrug efflux                 | AF053771  |
|                 | multidrug efflux protein                                                               |     |                                  |           |
| $qacE\Delta l$  | small multidrug resistance protein, membrane transporter of cations and                | 198 | quaternary ammonium              | AJ698325  |
|                 | cationic drugs                                                                         |     | compounds                        |           |
| qacF            | small multidrug resistance protein, membrane transporter of cations and cationic drugs | 195 | quaternary ammonium compounds    | NC_007502 |

| qacF, qacH | small multidrug resistance protein, membrane transporter of cations and | 172 | quaternary ammonium              | AY139598  |
|------------|-------------------------------------------------------------------------|-----|----------------------------------|-----------|
|            | cationic drugs                                                          |     | compounds                        |           |
| qacG2      | small multidrug resistance protein, membrane transporter of cations and | 147 | quaternary ammonium              | AJ609296  |
|            | cationic drugs                                                          |     | compounds                        |           |
| acrB       | RND family, acridine/multidrug efflux pump                              | 160 | multidrug efflux                 | M94248    |
| acrD       | cation/multidrug efflux pump                                            | 185 | aminoglycosides, Nv              | U12598    |
| mexB       | cation/multidrug efflux pump, RND multidrug efflux transporter          | 147 | multidrug efflux                 | L11616    |
| mexD       | RND multidrug efflux transporter                                        | 185 | Em, Rox                          | NC_003430 |
| mexD       | cation/multidrug efflux pump, RND multidrug efflux transporter          | 182 | multidrug efflux                 | U57969    |
| mexF       | cation/multidrug efflux pump, RND multidrug efflux transporter          | 348 | multidrug efflux                 | X99514    |
| mexI       | cation/multidrug efflux pump, RND multidrug efflux transporter          | 170 | multidrug efflux                 | AE004837  |
| mexY       | cation/multidrug efflux pump, RND multidrug efflux transporter          | 198 | multidrug efflux                 | AB015853  |
| orf11      | ABC type permease                                                       | 198 | Nal, Nor                         | NC_006385 |
| rep        | replication initiation protein                                          | 163 | IncA/C-specific gene             | X73674    |
| repE       | replication initiation protein                                          | 192 | IncFIA-specific replication gene | AJ851089  |
| kikA       | killing in Klebsiella                                                   | 198 | IncN-specific gene               | AY046276  |
| trfA       | replication initiation protein                                          | 192 | initiation of replication, IncP- | NC_004840 |
|            |                                                                         |     | specific gene                    |           |
| oriV       | origin of the vegetative replication                                    | 192 | IncQ-specific region             | NC_001740 |

\* The PCR product is specific for all genes given in the field

<sup>#</sup> Abbreviations: Ak - amikacin; Amo - amoxicillin; Amp - ampicillin; Atm - aztreonam; Azm - azithromycin; Car - carbenicillin; Caz - ceftazidim; Cec - cefaclor; Cfp - cefoperazon; Cft - ceftibuten; Cip - ciprofloxacin; Clr - clarithromycin; Cm - chloramphenicol; Cpo - cefpirom; Cro - ceftriaxon; Ctx - cefotaxim; Cxm - cefuroxim; Em - erythromycin; Fep - cefepim; Ffc - florfenicol; Fox - cefoxitin; Gm - gentamicin; Ipm - imipenem; Kf - cephalothin; Km - kanamycin; Lev - levofloxacin; Met - methicillin; Mez - mezlocillin; Nal - nalidixic acid; Neo - neomycin; Nor - norfloxacin; Nv - novobiocin; Ob - cloxacillin; Ofx - ofloxacin; Pen-G - penicillin G; Prl - piperacillin; Rif - rifampicin; Rox - roxithromycin; Spar - sparfloxacin; Sm - streptomycin; Sp - spectinomycin ; Sul - sulfonamides; Tc - tetracyclines; Tic - ticarcillin; Tob - tobramycin; Tp - trimethoprim; Ty - tylosin.

## 14.3 Abkürzungsverzeichnis und Glossar

| aa-dUTP        | Aminoallayl-Desoxyuraciltriphosphat                                      |
|----------------|--------------------------------------------------------------------------|
| Array          | Zusammenstellung von Ziel-Sequenzen für ein                              |
|                | Hybridisierungsexperiment auf einem Trägermaterial                       |
| bp             | Basenpaar(e)                                                             |
| bzw.           | beziehungsweise                                                          |
| ca.            | circa                                                                    |
| DIG            | Digoxygenin                                                              |
| DNA            | Desoxyribonukleinsäure                                                   |
| dNTP           | Desoxynukleotidtriphosphate                                              |
| E. coli        | Escherichia coli                                                         |
| et al.         | et alii (und andere)                                                     |
| gfp            | Gen für das grün fluoreszierende Protein                                 |
| Grid           | Ein Sektor auf dem Slide                                                 |
| Inc            | Inkompatibilitätsgruppe                                                  |
| Microarray     | Array mit einer hohen Dichte an Zielsequenzen                            |
| Multiplex-PCR  | PCR zur gleichzeitigen Amplifikation mehrerer Ziel-DNAs                  |
| nm             | Nanometer                                                                |
| Oligonukleotid | einzelsträngiges DNA-Molekül, das aus ca. 15 bis 100 Nukleotiden besteht |
| PCR            | polymerase-chain-reaction – Polymerase Kettenreaktion                    |
| Primer         | Oligonukleotid als Startermolekül in einer PCR-Reaktion                  |
| Slide          | Träger, an welchen die Oligonukleotide gebunden werden (hier             |
|                | Glasobjektträger)                                                        |
| Superstructure | Kunststoffmaske, die auf den Slide aufgeklebt wird und eine              |
|                | Trennung der Grids ermöglicht                                            |
| Template       | Kopiervorlage                                                            |
| z.B.           | zum Beispiel                                                             |
|                |                                                                          |