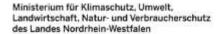
MIKROSCHADSTOFFE AUS KOMMUNALEM ABWASSER

Stoffflussmodellierung, Situationsanalyse und Reduktionspotenziale für Nordrhein-Westfalen

Im Auftrag des Ministeriums für Klimaschutz, Umwelt, Landwirtschaft,
Natur- und Verbraucherschutz NRW


ABSCHLUSSBERICHT

8. Oktober 2012



MIKROSCHADSTOFFE AUS KOMMUNALEM ABWASSER

Stoffflussmodellierung, Situationsanalyse und Reduktionspotenziale für Nordrhein-Westfalen

Auftraggeber:

Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz Nordrhein-Westfalen (MKULNV), D

Autoren:

Christian Götz (Datenanalyse, Modellierung und Bericht), ENVILAB AG, Mühlethalstrasse 25, Zofingen, CH, christian.goetz@envilab.ch

Robert Kase (Projektkoordination, Ökotoxikologie), Schweizerisches Zentrum für angewandte Ökotoxikologie (Oekotoxzentrum), Dübendorf, CH robert.kase@oekotoxzentrum.ch

Christoph Ort und Heinz Singer; Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (Eawag), Dübendorf, CH christoph.ort@eawag.ch; heinz.singer@eawag.ch

Sabine Bergmann, Landesamt für Natur, Umwelt und Verbraucherschutz NRW, D, sabine.bergmann@lanuv.nrw.de

Fachliche Begleitung und Review:

Viktor Mertsch, MKULNV Nadzeya Homazava, Oekotoxzentrum Inge Werner, Oekotoxzentrum

Zitiervorschlag:

Christian Götz, Sabine Bergmann, Christoph Ort, Heinz Singer und Robert Kase, <u>2012</u>, "*Mikroschadstoffe aus kommunalem Abwasser - Stoffflussmodellierung, Situationsanalyse und Reduktionspotenziale für Nordrhein-Westfalen"*. Studie im Auftrag des Ministeriums für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz Nordrhein-Westfalen (MKULNV), D

Informationen / Kontakt:

Der Bericht kann beim MKULNV unter poststelle@mkulnv.nrw.de angefragt werden.

Ansprechpartner MKULNV: viktor.mertsch@mkulnv.nrw.de Ansprechpartner LANUV: sabine.bergmann@lanuv.nrw.de

Weitere Informationen und Download: http://www.masterplan-wasser.nrw.de und http://www.oekotoxzentrum.ch/projekte/stofffluss/index

Danksagung an zahlreiche Mitarbeiterinnen und Mitarbeiter im LANUV, insbesondere: Probenahme und Analytik:

Klaus Selent (Koordinierung Messprogramm Abwasser, Ansprechpartner für die Organisation und Durchführung der Untersuchungen)

Hugo Hick, Jörg Glaßmacher, Christian Foltys, Engelbert Thoms für Planung und Durchführung der Probenahmen

Rolf Reupert und MitarbeiterInnen des Labors Düsseldorf für die Durchführung der Analytik

Bereitstellung, Ermittlung und Plausibilisierung der Grundlagendaten und Ergebnisse:

Martin Brinkmann, Bernd Mehlig und MitarbeiterInnen des LANUV u. der Bezirksregierungen im Bereich Hydrologie (Zusammenstellung und Prüfung der Abflussdaten, MNQ).

Michael Holland, Peter Perkons (Gewässergütedaten)

Ludger Neuhann, Denise Früh (GIS-Daten Gewässernetz NRW, Erstellung der Karten Ist-Zustand / Extrapolation der Ergebnisse auf Oberflächenwasserkörper, Plausibilisierung der Eingangs- und Ergebnisdaten)

Dr. Gerta Mentfewitz, Andrea Ellinghoven, Norbert Lerch (Abwasserdaten, Ausbaudaten Kläranlagen)

Ermittlung und Festlegung der Qualitätskriterien Gewässergüte, Plausibilisierung der Ergebnisse zur Gewässergüte in Abstimmung mit WG-E, UBA u. Ökotoxzentrum

Dr. Friederike Vietoris

Danksagung auch an zahlreiche externe Beteiligte, insbesondere:

Alle Betreiber der im Anhang 2 aufgeführten Kläranlagen für die Bereitschaft, sich am Messprogramm zu beteiligen und die Ergebnisse zu veröffentlichen

Bundesanstalt für Gewässerkunde, Emschergenossenschaft / Lippeverband, Erftverband, Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Ruhrverband (Bereitstellung von Abflussdaten)

Jochen Herr und Susanne Malms, RWTH Aachen (Bereitstellung von Daten aus dem Projekt MIKROMEM (TP7, Spurenstoffprojekte))

Dr. Reinhard Noll, OWL Umweltanalytik (Bereitstellung einer Auswertung der Spuren- und Mikroschadstoffuntersuchungen kommunaler Kläranlagen)

Frank Benstöm, RWTH Aachen (Bereitstellung von Daten aus dem Projekt Mikroflock)

Dr. Torsten Frehmann, Emschergenossenschaft/Lippeverband (Messdaten von Kläranlagen im Verbandsgebiet)

Ruhrverband (Messdaten von Kläranlagen / Ruhrgüteberichte 2010, 2011)

Yannick Taudien, Wupperverband (Messdaten von Kläranlagen im Verbandsgebiet)

Paul Wermter Forschungsinstitut für Wasser- und Abfallwirtschaft an der RWTH Aachen (FiW) e.V., Aachen; Dr. Jochen Türk, IUTA, Duisburg (Bereitstellung von Informationen zur Methodik und Ergebnissen aus dem Projekt "Volkswirtschaftlicher Nutzen der Ertüchtigung kommunaler Kläranlagen zur Elimination von Mikroschadstoffen Forschungsinstitut für Wasser- und Abfallwirtschaft")

Betreiber der Zentralkläranlage Lage, OWL Umweltanalytik, Bezirksregierung Detmold /Thomas Sürder (Bereitstellung der Messdaten zu anthropogenen Spurenstoffen an der ZKA Lage)

Andrea Kaste, MKULNV (Einholen von Daten und Informationen aus anderen Projekten und von Betreibern; Abgleich der Daten mit dem Lagebericht "Entwicklung und Stand der Abwasserbeseitigung in Nordrhein-Westfalen")

Dieter Schudoma, Umweltbundesamt (laufender Austausch der aktuellen Informationen zu Gewässerqualitätskriterien)

Dr. Ines Roennefahrt, Umweltbundesamt (Datenrecherche zu Humanarzneistoffen)

IMS Health AG (Bereitstellung Verkaufszahlen Humanarzneistoffe in Dtl.)

Stefano Dazio (HOLINGER AG, Bern CH) für die GIS-basierten graphische Darstellungen der Einleitstellen und Karin Borkmann (HOLINGER AG, Luzern CH) für die Zusammenstellung der Tagesabflussdaten und die Umrechnungen der Konzentrationen an den 51 ausgewählten GUES-Messstellen auf Frachten.

INHALT

Z	usamr	menfa	assung	7
1		Einl	eitung	9
	1.1	Aus	gangslage	9
	1.2	Ziel	setzung und Durchführung des Projektes	10
	1.3	Vor	gehen: Kurzer Überblick	10
	1.3	.1.	Erstellen des Stoffflussmodells	11
	1.3	.2.	Überprüfung der Inputdaten	12
	1.3	.3.	Berechnung des IST-Zustandes	12
	1.3	.4.	Ermittlung der MNQ-Werte	12
	1.3	.5.	Modellüberprüfung: Vergleich mit Messdaten in den Gewässern	13
	1.3	.6.	Szenarienanalysen und Reduktionsmassnahmen	13
	1.3	.7.	Herleitung und Definition von Qualitätskriterien	15
	1.3	.8.	Flächendeckende Risikoabschätzung durch Anwendung von Umweltqualitätskriterien zur Erfassung der chemischen Wasserqualität	15
2		Gev	vässernetz und Kläranlagen	16
	2.1	Übe	ersicht	16
	2.2	Grö	ssenverteilung der Kläranlagen	17
	2.3	Abv	vassermengen	17
	2.4	Kläı	anlagen mit Flockungsfiltration	19
	2.5	Kläı	ranlagen mit weitergehender Abwasserbehandlung für Mikroschadstoffe	20
	2.6	Kläı	ranlagen mit Einleitung in trinkwasserrelevante Gewässer	21
	2.7	Ver	teilung der Abflussdaten (Mittlerer Niedrigwasserabfluss, MNQ)	22
3	•	Sto	ffdaten	23
	3.1	Vor	aussetzungen	23
	3.2	Sto	ffauswahl und -daten	24
	3.3	Mes	ssungen von Mikroschadstoffen in Kläranlagen	26
	3.4	Ver	gleich der berechneten Inputdaten mit Messungen an Kläranlagen	27
	3.5	Sch	lussfolgerungen und Inputdaten für die Stoffflussmodellierung	29
	3.6	Mes	ssungen von Mikroschadstoffen in Gewässern	30
	3.7	Wir	kungsbasierte Qualitätskriterien	33
	3.7	.1.	Wirkungsbasierte Qualitätskriterien des Oekotoxzentrums	33
	3.7	.2.	Trinkwasserspezifische Zielwerte	33

	3.7	.3.	Abgleich mit dem LANUV und in dieser Arbeit verwendete Werte	34
4.	i	Stof	fflussmodell	35
	4.1	Gru	ndsätzlicher Aufbau und Programmierung	35
	4.2	Aus	tauschtabelle	36
	4.3	Vorl	pelastungen der zufliessenden Gewässer	38
	4.3	.1.	Vorbelastung des Rheins	38
	4.3	.2.	Vorbelastung der übrigen Gewässer	39
5.		Ber	echnung des IST-Zustandes	40
	5.1		oreferenzierte Darstellung der modellierten Konzentrationen einer Auswahl an roschadstoffen	40
	5.1	.1.	Carbamazepin	40
	5.1	.2.	Diclofenac	41
	5.1	.3.	Metoprolol	42
	5.2		rprüfung des Stoffflussmodells: Vergleich der berechneten Stoffflüsse mit sadaten,	43
	5.2	.1.	Verifizierung, Validierung und Überprüfung des Modells	43
	5.2	.2.	GUES-Messstellen	43
	5.2	.3.	Carbamazepin	45
	5.2	.4.	Diclofenac	45
	5.2	.5.	Umrechnung der gemessenen Konzentrationen auf Stoffflüsse	46
	5.2	.6.	Vergleich der Stoffflüsse für ausgewählte Mikroschadstoffe	46
	5.3	Beu	rteilung der Gewässerbelastung	50
	5.3	.1.	Einzelstoffbeurteilung anhand von ökotoxikologisch basierten Werten	50
	5.3	.2.	Vergleich mit ökotoxikologischen Qualitätskriterien für Carbamazepin, Diclofend und Metoprolol	
	5.3	.3.	Vergleich mit ökotoxikologischen Qualitätskriterien für sechs Mikroschadstoffe.	54
	5.3	.4.	Extrapolation der Konzentrationen unterhalb der Einleitstellen auf die Oberflächenwasserkörper	56
	5.3	.5.	Vergleich mit trinkwasserspezifischen Zielwerten	58
	5.3	.6.	Zusammenfassung IST-Zustand	59
6.		Sze	narienanalysen	61
	6.1	Sze	narienauswahl	61
	6.2	Elim	ninationsraten einzelner Mikroschadstoffe in weitergehenden Verfahren	61
	6.3	Sze	nario A: Trinkwassergewinnung	62

	6.4	Sze	nario B: Ausbau von Kläranlagen mit Flockungsfiltration	65
	6.5	Sze	nario C: Ausbau aller Anlagen >100'000 Einwohner	67
	6.6		nario D: Optimierung zur Senkung ökotoxikologisch problematischer zentrationen in den Gewässern	68
	6.6.	1.	Übersicht und Vorgehen	68
	6.6.	2.	Optimierung der Wasserqualität hinsichtlich ökotoxikologischer Kriterien mit Diclofenac als Indikatorstoff	69
	6.6.	3.	Optimierung der Wasserqualität hinsichtlich ökotoxikologischer Kriterien mit Carbamazepin als Indikatorstoff	72
7.		Sch	lussfolgerungen und Ausblick	75
	7.1	Met	hodische Schlussfolgerungen	75
	7.2	Gev	vässerschutz mit Blick auf ökotoxikologische Gewässergüte	75
	7.3	Fra	chtreduktion für Nordrhein-Westfalen gesamt	76
	7.4	Opt	imierung zum Schutz der Trinkwasserressourcen	76
8.		Em	pfehlungen für weitergehende Untersuchungen und Massnahmen	79
	8.1	Wei	itere Arbeiten am Stoffflussmodell NRW	79
	8.1.	1.	Absicherung der Modellresultate und Ausweitung auf weitere Stoffe	79
	8.1.	2.	Zielorientierte Szenarienanalysen und Kosten-/Nutzen-Untersuchungen	79
	8.1.	3.	Vertiefte Analyse der trinkwasserrelevanten Gewässer	80
	8.2		weitung der Stoffflussmodellierung und benutzerfreundliche Umsetzung des dells	80
	8.3	Ver	knüpfung des Stoffflussmodells mit Screening und Biotests	80
	8.3.	1.	Verknüpfung der Stoffflussanalyse mit Screening	80
	8.3.	2.	Biotests	81
9.		Lite	ratur	83
Δ	nhana	1· N	Mittlere Abwassermengen und Abwasseranteile	86
			Messdaten der Konzentrationen im Abwasser	
	•		Messdaten im Gewässer – Stofffrachten und Konzentrationen	
			Festlegung der Qualitätsziele mit Blick auf dieökotoxikologische Gewässergüte .	
	•		Modellierte Konzentrationen (IST-Zustand)	
	_		Gurzcharakterisierung der modellierten Substanzen	112

ZUSAMMENFASSUNG

Mit 17,8 Millionen Einwohnern ist Nordrhein-Westfalen das bevölkerungsreichste Bundesland in Deutschland. Durch die hohe Besiedlungsdichte, insbesondere in industriellen Ballungsgebieten wie dem Ruhrgebiet, ist der Druck auf die Gewässer durch die Wassernutzung und Abwassereinleitung verhältnismäßig groß. Bei Niedrigwasser führen viele Gewässer einen Abwasseranteil (gereinigtes Abwasser aus kommunalen Kläranlagen) von mehr als 10%.

Mit dem gereinigten kommunalen Abwasser werden Rückstände von Arzneimitteln, Bioziden und Haushaltschemikalien, sogenannte Mikroschadstoffe, in die Oberflächengewässer eingetragen. Aufgrund der hohen Abwasserbelastung der nordrhein-westfälischen Fliessgewässer, ist auch die Problematik der Mikroschadstoffe für Nordrhein-Westfalen von besonderer Relevanz. In diesem Projekt wurde für Arzneimittel und weitere Mikroschadstoffe aus kommunalen Kläranlagen mit einem Stoffflussmodell eine flächendeckende Übersicht zur Belastungslage erstellt und der aktuelle Handlungsbedarf aufgezeigt. Es wurden dabei rund 650 Kläranlagen mit einer Größe >50 Einwohnerwerten (EW) berücksichtigt. Mit dem Stoffflussmodell wurden sowohl die Stoffflüsse als auch die Konzentrationen im Gewässer direkt unterhalb der Einleitstellen der Kläranlagen berechnet.

Die modellierten Stofffrachten wurden mit gemessenen Daten in Kläranlagenabläufen und Oberflächengewässern verglichen. Für Oberflächengewässer standen sehr viele Messdaten zur Verfügung. An insgesamt 51 GUES-Messstellen wurden insgesamt mehr als 10'000 Messwerte von Mikroschadstoffen erhoben. Für die Kläranlagenausläufe wurde im Rahmen dieses Projektes vom LANUV eine umfangreiche Messkampagne an dreizehn Kläranlagen durchgeführt. Die Vergleiche der modellierten Frachten in Kläranlagen zeigen für alle untersuchten Arzneimittel eine gute Übereinstimmung. Die Vergleiche mit Messdaten in Oberflächengewässern, an insgesamt 51 verschiedenen GUES-Messstellen, zeigen für die Mikroschadstoffe ebenfalls gute Übereinstimmungen.

Als ein ökotoxikologisch besonders diskutiertes Arzneimittel, für welches die EU Kommission im Januar 2012 einen Qualitätsnormvorschlag von 0.1 µg/L veröffentlicht hat, wurde Diclofenac genauer ausgewertet. Die Modellergebnisse des IST-Zustandes weisen darauf hin, dass die Diclofenac-Konzentrationen in rund 90% aller Gewässerabschnitte direkt unterhalb von Kläranlageneinleitstellen bei Niedrigwasser höher als das wirkungsbasierte Qualitätskriterium von 0.1 µg/L sind. Auch andere Arzneimittel wie Sulfamethoxazol, Clarithromycin oder Carbamazepin überschreiten häufig die Qualitätsziele. Die Analyse des IST-Zustandes der Gewässer in Nordrhein-Westfalen zeigt somit einen sehr weitreichenden Handlungsbedarf in Bezug auf den Arzneimitteleintrag aus kommunalem Abwasser im Allgemeinen und auf Diclofenac im Speziellen auf. Wenn vorsorgliche Werte zum Schutz des Trinkwassers angewendet werden, welche für Arzneimittel generell 0.1 µg/L pro Einzelstoff betragen, wird ein noch dringenderer Handlungsbedarf in Bezug auf die Reduktion von Mikroschadstoffen aus kommunalem Abwasser in Gewässern mit Trinkwassernutzung und deren Oberlieger aufgezeigt.

Mit Hilfe von Szenarienanalysen wurden verschiedene Reduktionspotentiale ermittelt. Um überall die Qualitätsziele bei Niedrigwasser einzuhalten, müsste den Ergebnissen zu Folge ein Großteil aller Kläranlagen mit einer weitergehenden Reinigungsstufe ausgerüstet oder auf eine größere Kläranlage abgeleitet werden.

Die Gesamtfracht an Mikroverunreinigungen hingegen kann mit dem Ausbau von wenigen großen Kläranlagen erheblich reduziert werden: Mit dem Ausbau aller Kläranlagen, an die über 100'000 Einwohner angeschlossenen sind, ist eine Reduktion der Gesamtstofffracht von mehr als 40% erreichbar. Dies sind rund 6% der Kläranlagen in Nordrhein-Westfalen.

Es zeigt sich bei den Szenarioanalysen die auf den Trinkwasserschutz abzielen, dass eine deutliche Entlastung der betroffenen Fliessgewässer erreicht werden könnte, wenn die Oberlieger ebenfalls Massnahmen ergreifen. Dies gilt insbesondere für den Rhein, welcher bereits beim Eintritt in das Bundesland Nordrhein-Westfalen mit dem Abwasser von rund 32 Mio. Einwohnern vorbelastet ist. Die alleinige Planung von Massnahmen in Nordrhein-Westfalen ist für einen effektiven Schutz der Trinkwasserressourcen, insbesondere des Rheins, nicht ausreichend. Für weitere Untersuchungen müsste abgeklärt werden, mit welcher Reduktion durch Oberlieger gerechnet werden könnte.

1. EINLEITUNG

1.1 Ausgangslage

Anthropogen eingetragene organische Spurenstoffe in natürlichen Gewässern stehen der Umweltforschung, in Politik und im Umweltvollzug mehr und mehr im Zentrum des Interesses. Neben verschiedenen Messkampagnen und Studien, in welchen organische Spurenstoffe in diversen Gewässern nachgewiesen wurden, werden auch negative Effekte dieser Substanzen im niedrigen μg/L und teilweise bereits im ng/L Bereich nachgewiesen (Escher, et al., 2008; Götz, et al., 2010; Bergmann, et al., 2011; Hirsch, et al., 1999; Internationale Kommission zum Schutz des Rheins (IKSR), 2010; Ruhrverband, 2009; Fahlenkamp, et al., 2008). Diese organischen Spurenstoffe werden aufgrund des Konzentrationsbereiches, welcher typischerweise im ng/L bis μg/L Bereich liegt, auch Mikroschadstoffe genannt.

Mikroschadstoffe aus kommunalem Abwasser, also Arzneimittelrückstände, Haushaltschemikalien, Biozide und weitere Stoffe mit Ursprung im Siedlungsgebiet, haben einen grossen Anteil an den in natürlichen Gewässern gefundenen organischen Spurenstoffen (Gälli, et al., 2009). Für Mikroschadstoffe aus kommunalem Abwasser können vier Haupteintragspfade in die Gewässer unterschieden werden: (1) Eintrag mit gereinigtem Abwasser über Kläranlagen; (2) Eintrag mit ungereinigtem Abwasser über Mischwasserentlastungen bei Kapazitätsüberschreitungen der Kläranlagen und der Kanalisation; (3) Eintrag durch Leckagen in der Kanalisation oder Fehlanschlüsse; und (4) Eintrag mit verschmutztem Niederschlagswasser von Dächern oder versiegelten Flächen durch Regenkanäle. Da viele Mikroschadstoffe in konventionellen Kläranlagen nicht ausreichend abgebaut werden und mengenmässig der grösste Anteil an Abwasser durch Kläranlagen in die Gewässer eingebracht wird, stellt der Eintrag mit gereinigtem kommunalem Abwasser den wichtigsten Eintragspfad dar (Abegglen, et al., 2012).

Mit rund 17,8 Millionen Einwohnern ist Nordrhein-Westfalen das bevölkerungsreichste Bundesland in Deutschland. Durch die relativ hohe Besiedlungsdichte, insbesondere in industriellen Ballungsgebieten wie dem Ruhrgebiet, ist der Druck auf die Gewässer durch die Wassernutzung und Abwassereinleitung besonders hoch. Bei Niedrigwasser führen viele Gewässer einen Abwasseranteil (gereinigtes Abwasser aus kommunalen Kläranlagen) von mehr als 10%. Ein Abwasseranteil von 10% wurde bei konventioneller Aufbereitungstechnik in verschiedenen Studien im Rahmen des Projektes Micropoll des Schweizerischen Bundesamtes für Umwelt (BAFU) als kritisch identifiziert und wurde für die Priorisierung von Ausbaumassnahmen als ein Entscheidungskriterium vorgeschlagen (Abegglen, et al., 2012; Gälli, et al., 2009).

1.2 Zielsetzung und Durchführung des Projektes

In Nordrhein-Westfalen sind rund 650 Kläranlagen mit einer Grösse >50 Einwohnerwerte (EW) in Betrieb. Um die derzeitige Belastungssituation für Mikroschadstoffe erfassen zu können und eine flächendeckende Übersicht zu erhalten, sollte ein georeferenziertes Stoffflussmodell verwendet und angepasst werden. Für die Modellierung sollten ausgewählte Mikroschadstoffe und deren aktuelle Umweltqualitätskriterien berücksichtigt werden.

Der Schwerpunkt wird in erster Linie auf persistente Arzneimittelrückstände und einige Haushaltschemikalien gesetzt, welche einen zeitlich und räumlich homogenen Verbrauch aufweisen, in heutigen Kläranlagen und Fliessgewässern nicht schnell abgebaut werden und für die Verbrauchszahlen bekannt sind oder abgeschätzt werden können.

Ziel der Stoffflussmodellierung ist die Identifizierung von besonders problematischen Vorflutern zur Priorisierung von Messungen und genaueren Untersuchungen. Das landesweite Stoffflussmodell ist ein Übersichtsmodell und soll als Entscheidungshilfe für das weitere Vorgehen bezüglich der Problematik der Mikroschadstoffe dienen. Gleichermassen können mit dem Modell auch unkritische Gewässerabschnitte identifiziert werden und den zukünftigen Messaufwand deutlich eingrenzen.

Für die Berechnungen werden die vom LANUV vorgegebenen aktuellen wirkungsbasierten ökotoxikologischen Umweltqualitätskriterien (UQN-Vorschläge des UBA) herangezogen. Im Weiteren wurde zum Vergleich die aktuellen Überschreitungen von vorsorgliche Werten unter Berücksichtigung der Bewertungsstrategie "Reine Ruhr" (vgl. GOW-Konzept, UBA, 2003) für sechs Mikroschadstoffe angeschaut. (Expertenkommission Programm "Reine Ruhr" und MKULNV, 2012).

Neben der Erfassung der IST-Situation sollen mit dem Modell Möglichkeiten zur Reduktion der Belastung der Gewässer mit Mikroschadstoffen aufgezeigt und verschiedene Reduktionsvarianten miteinander verglichen werden.

1.3 Vorgehen: Kurzer Überblick

In der Abbildung 1 ist das Vorgehen in sieben Schritten skizziert. Die einzelnen Schritte sind im Anschluss in den Abschnitten 1.3.1 bis 1.3.8 kurz beschrieben.

Abbildung 1: Vorgehen für die flächendeckende Situationsanalyse und Stoffflussmodellierung für Nordrhein-Westfalen.

1.3.1. Erstellen des Stoffflussmodells

Für die Modellierung eingesetzt wurde ein georeferenziertes Stoffflussmodell, welches im Rahmen des Projektes "Strategie Micropoll' im Auftrag des Schweizer Bundesamts für Umwelt als Screening Tool zur Massnahmen-Evaluation für siedlungsbürtige Mikroverunreinigungen entwickelt wurde (Ort, et al., 2007). Das Modell basiert auf der Aufsummierung von einwohnerspezifischen Stoffflüssen, welche über Kläranlagen in die Gewässer eingetragen werden. Die Stoffeinträge der Kläranlagen werden dabei entlang der Fliessstrecke der Gewässer akkumuliert. Dabei werden im verwendeten Stoffflussmodell keine Abbau- und Sorptionsprozesse in der Umwelt berücksichtigt. Berücksichtigt wurden lediglich die stoffspezifischen Eliminationsleistungen der vorhandenen Kläranlagen. Die Modellierung muss daher auf näherungsweise persistente, gewässergängige Stoffe fokussiert bleiben. Diese Stoffe zählen in der Regel jedoch auch gerade aufgrund ihrer Persistenz zu den problematischen Mikroschadstoffen aus dem kommunalen Abwasser. Der konzeptionelle Aufbau, die notwendigen Eingangsgrössen, die Vorhersagekraft und die implementierten Rechenszenarien des Modells sind in den Veröffentlichungen Ort et al. (2007) und Ort, et al. (2009) detailliert beschrieben. Im Weiteren wurde dieses Modell für das Bodenseegebiet angepasst und eingesetzt und ebenfalls für eine schweizweite Situationsanalyse für 6 Mikroschadstoffe angewendet (Longrée, et al., 2011; Götz, et al., 2010). Dieses Modell wurde nun auch für NRW entwickelt und flächendeckend eingesetzt.

1.3.2. Überprüfung der Inputdaten

Zur Überprüfung der Emissionsdaten von Stoffen in die Gewässer wurden die aus den Verbrauchszahlen, Metabolisierungsraten im Körper und Abbau- und Sorptionsprozessen in Kläranlagen abgeleiteten Einträge mit Messdaten in Kläranlagen verglichen. Dazu wurden verschiedene Messdaten des LANUV, sowie Daten von Kläranlagenbetreibern in NRW und aus Forschungsprojekten verwendet (Herbst, et al., 2011; Türk, et al., 2011; Jargemann, 2011). Das Projekt wurde durch das LANUV fachlich begleitet, daher war ein kontinuierlicher Informationseinbezug zu aktuellen NRW relevanten Messergebnissen möglich.

Aktuelle bundesweite Verbrauchszahlen wurden vom UBA bezw. mittels Literaturrecherche seitens des LANUV zur Verfügung gestellt. Die fehlenden stoffspezifischen Daten und Verbrauchszahlen wurden für die wichtigsten Stoffe aus Messwerten in Kläranlagenausläufen abgeschätzt und durch die Bewertung aus dem Bodenseeprojekt oder den Verbrauchsdaten für die Schweiz von 2009 ergänzt. Im Weiteren wurden die aus den Verbrauchszahlen abgeschätzten Emissionen mit aktuellen repräsentativen Messungen des LANUV in Kläranlagenausläufen Nordrhein-Westfalens verglichen (siehe Abschnitt 3.4).

1.3.3. Berechnung des IST-Zustandes

Die Konzentrationen und Frachten für ausgewählte Mikroverunreinigungen wurden unterhalb jedes Kläranlagenauslaufs berechnet. Dazu wurden mit dem oben beschriebenen Stoffflussmodell die Stofffrachten mit den mittleren Niedrigwasserabflüssen (MNQ) in Konzentrationen umgerechnet. Folgende Stoffe wurden berücksichtigt: Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol, Sotalol und Sulfamethoxazol. Die Verdünnung des Abwassers ist im Falle von MNQ kleiner, als im Jahresmittel. Über das ganze Jahr gesehen kann dieser Fall aber mehrmals auftreten bzw. in Trockenperioden auch über längere Zeit anhalten.

1.3.4. Ermittlung der MNQ-Werte

Der mittlere Niedrigwasserabfluss in den Gewässern unterhalb der Kläranlagen wurde auf Basis der mittleren niedrigsten Abflussspenden in L/(s*km²) (MNQ) ermittelt. Einige Angaben konnten durch den Abgleich mit Pegeln bzw. anderen Einleitungsstellen im Umkreis generiert werden. Andere Angaben wurden durch Expertenurteil (LANUV) ergänzt. In wenigen Einzelfällen (bei Einleitungsstellen kurz oberhalb der Mündung) beziehen sich die MNQ-Werte auf das nächstgrössere Gewässer. Für diese Stellen wurden die Konzentrationen im entsprechenden nächstgrösseren Gewässer bestimmt und angegeben. Direkt unterhalb der Einleitstelle wurde nur der Stofffluss modelliert, aber keine Konzentrationen.

Um zu verhindern, dass durch zu tief geschätzte MNQ-Werte unrealistisch hohe Konzentrationen berechnet werden, wurden alle MNQ-Werte mit der kumulierten Abwassermenge an der

entsprechenden Einleitstelle verglichen. Falls die kumulierte Abwassermenge grösser als der abgeschätzte MNQ war, wurde der MNQ durch die kumulierte Abwassermenge an der entsprechenden Einleitstelle ersetzt, d.h. es wurde für diese Einleitstellen ein Abwasseranteil von 100% angenommen. Um die kumulierten Abwassermengen zu berechnen, wurden die gemessenen Mengen (Durchschnittswerte 2010, vom LANUV zur Verfügung gestellt) verwendet.

1.3.5. Modellüberprüfung: Vergleich mit Messdaten in den Gewässern

Durch einen Vergleich der gemessenen und der modellierten Daten in den Gewässern wurde das Stoffflussmodell für Nordrhein-Westfalen validiert. Dazu wurden Messstellen aus dem Gewässergüte-Messnetz NRW (GUES-Messstellen) ausgewählt, wobei folgende Kriterien erfüllt sein mussten:

- Ausreichende Anzahl Untersuchungen auf Indikatorstoffe im Zeitraum 2008-2010 (2011) vorhanden (mindestens 12 Proben).
- Tagesabflusswerte zu den korrespondierenden Probenahmeterminen vorhanden.

Die angegebenen Kriterien wurden bei 51 GUES-Messstellen (von insgesamt 837 auf die betreffenden Stoffe untersuchten GUES-Messstellen) erfüllt. Enthalten sind 43 besonders intensiv beprobte Überblicksmessstellen (Überblicksmessnetz gemäß EU-WRRL). Diese Messstellen befinden sich systematisch an allen Haupt- und größeren Nebengewässern sowie an wasserwirtschaftlich besonders bedeutsamen Stellen im Gewässernetz.

Die an den ausgewählten GUES-Messstellen gemessenen Konzentrationen wurden über die verfügbaren Tagesabflusswerte von Bezugspegeln auf Stofffrachten umgerechnet, wobei nur Werte oberhalb der analytischen Bestimmungsgrenzen (BG) für die mittleren Frachtberechnungen berücksichtigt wurden. Die Auswahl der Stoffe für die Modellierung und Modellvalidierung beschränkte sich auf regelmässig oberhalb der analytischen Bestimmungsgrenze in den Gewässern nachweisbare Substanzen. Die so errechneten Stofffrachten wurden dann mit den modellierten Frachten verglichen. Die Modellanalysen wurden für 7 Substanzen (Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol, Sotalol, Sulfamethoxazol) durchgeführt. Die Auswahl der Substanzen wird im Abschnitt 3.2 im Detail aufgezeigt. In diesem Bericht wird auf die Substanzen fokussiert, zu denen ausreichende Daten (Messdaten >BG) für die Modellüberprüfung vorhanden sind und welche eine gute Übereinstimmung zwischen Stoffflussmodellierung und Messwerten im Gewässer erwartet wird.

1.3.6. Szenarienanalysen und Reduktionsmassnahmen

In der Regel werden für siedlungsrelevante, organische Substanzen dann hohe Frachten in einem Vorfluter erreicht, wenn die Substanzen in grossen Mengen im Siedlungsgebiet eingesetzt und diese ungenügend in der Kläranlage eliminiert werden.

Zurzeit werden in verschiedenen EU-Ländern als mögliche Massnahmen zur Reduktion von Mikroverunreinigungen in Oberflächengewässern ein Ausbau der Kläranlagen mit einer zusätzlichen Reinigungsstufe (Ozonung oder Aktivkohle) diskutiert. Einige Anlagen sind bereits in Betrieb (Kläranlagen in NRW mit weitergehender Spurenstoffelimination, s. Kapitel 2). Um zu überprüfen, welche Auswirkungen verschiedene Kläranlagen-Ausbaustrategien auf die Fracht und die Konzentration der als Indikatoren ausgewählten Substanzen haben, wurden unterschiedliche Szenarien mit dem Modell berechnet. Grundsätzlich kann zwischen zwei Hauptzielen unterschieden werden: 1) Reduktion hoher Konzentrationen (meist in vielen kleinen/schwachen Gewässern) und 2) Reduktion der Stofffracht (typischerweise bei grossen Kläranlagen). Die berechneten Szenarien dienen als Informationsgrundlage, mit welcher die Wirksamkeit eines gezielten Ausbaus, bzw. der Ertüchtigung von Kläranlagen an Belastungsschwerpunkten beurteilt werden und eine grobe Kosten-Nutzen-Analyse durchgeführt werden kann (Ort, et al., 2009).

Spezifische Reduktionsmassnahmenszenarien, die verglichen werden:

- A) (1) Ertüchtigung/Ausbau von Kläranlagen im Einzugsgebiet von Oberflächenwasserkörpern, aus denen täglich mehr als 100 m³ Trinkwasser gewonnen wird (OFWK gemäß Art.7 der EU-WRRL) und sich im Fließverlauf oberhalb der Trinkwassergewinnungsanlage befinden; sowie
 - (2) spezielle Betrachtung von Kläranlagen, die sich im Fließverlauf in 2 km oberhalb einer Trinkwassergewinnungsanlage befinden.
- B) Ertüchtigung/Ausbau von 100 Kläranlagen mit Flockungsfiltration, welche mit Aktivkohlefilter ersetzt würden.
- C) (1) Ausbau von 37 Kläranlagen >100'000 angeschlossenen Einwohnern mit zusätzlicher Ozonung oder zusätzlicher Aktivkohlebehandlung.
 - (2) Ausbau von 67 Kläranlagen >100'000 Plangrösse mit zusätzlicher Ozonung oder zusätzlicher Aktivkohlebehandlung.
- D) Ausbau der Kläranlagen, welche im Gewässer ökotoxikologisch problematische Konzentrationen von organischen Mikroschadstoffen verursachen:
 - (1) Kläranlagen >10'000 EW kommen für Ausbau in Frage.
 - (2) Alle Kläranlagen kommen für den Ausbau in Frage.

In diesem Projekt werden die Ausbauszenarien nur übersichtsmässig erfasst, d.h. es erfolgte keine Beurteilung der Infrastruktur der einzelnen Abwasserreinigungsanlage. Die Kläranlagen, die jedoch bereits über eine großtechnische Eliminationsstufe (Ozonung, Aktivkohle) verfügen, wurden in allen Szenarien berücksichtigt (vgl. Abschnitt 2.5). Eine detaillierte Betrachtung könnte als Folgeprojekt durchgeführt werden.

1.3.7. Herleitung und Definition von Qualitätskriterien

Für verschiedene Mikroschadstoffe wurden vom Oekotoxzentrum, teilweise auch in Zusammenarbeit mit internationalen Expertengremien, effektbasierte Qualitätskriterien, basierend auf aktuellen Effektdatensätzen erarbeitet und extern begutachtet. Diese wurden für die hier getätigte Risikoanalyse zur Verfügung gestellt und im Zusammenhang mit den Vorschlägen des Umweltbundesamtes diskutiert und ausgewählt.

Die wirkungsbasierten Kriterien können zur Klassierung der chemischen Wasserqualität verwendet werden, wie beispielsweise im Beurteilungskonzept des Projektes Micropoll (Gälli et al., 2009; Götz et al., 2010). Geltende Umweltqualitätsnormen gemäss der Umweltqualitätsnorm-Richtlinie werden, soweit vorhanden, verwendet.

Die ökotoxikologisch abgeleiteten Qualitätskriterien, welche in dieser Studie zur Anwendung kamen, wurden vom LANUV unter fachlicher Beratung durch das Umweltbundesamt in Deutschland und das Oekotoxzentrum festgelegt. Die verwendeten Werte sind in Abschnitt 3.7 wiedergegeben. Neben dem Vergleich mit ökotoxikologischen Qualitätskriterien wurde der IST-Zustand der Oberflächengewässer unterhalb der Einleitstellen auch bezüglich trinkwasserspezifischen Zielwerten gemäss Bewertungskonzept Reine Ruhr (Expertenkommission Programm "Reine Ruhr" und MKULNV, 2012) analysiert, sofern diese einen niedrigeren Wert ergeben als die ökotoxikologische Herleitung (siehe Abschnitt 5.3.5).

In einem aktuellen Dokument des Ministeriums für Klimaschutz, Umwelt, Landwirtschaft, Naturund Verbraucherschutz (MKULNV) des Landes Nordrhein-Westfalen ist die Strategie betreffend Mikroschadstoffe und auch die Ableitung von justitiablen Qualitätsnormen für Gewässer und Abwasser beschrieben (Expertenkommission Programm "Reine Ruhr" MKULNV, 2012). Anzustrebende Vorsorgewerte sind in diesem Bericht in der Tabelle 1, S. 72 wiedergegeben.

1.3.8. Flächendeckende Risikoabschätzung durch Anwendung von Umweltqualitätskriterien zur Erfassung der chemischen Wasserqualität

Die mit dem Stoffflussmodell berechneten Konzentrationen beim mittleren Niedrigwasserabfluss (MNQ) werden mit den vom LANUV definierten Qualitätskriterien verglichen. Dies erfolgt mit dem klassischen Ansatz der Risikobeurteilung über Risikoquotienten (Risikoquotient = Umweltkonzentration/Qualitätskriterium). Wenn der Risikoquotient grösser als 1 ist, wird das Qualitätskriterium unter den definierten Bedingungen, hier bei MNQ, überschritten. Ein Risiko für aquatische Organismen kann dann nicht mehr ausgeschlossen werden, sofern die Organismen für einen längeren Zeitraum dieser Belastung ausgesetzt sind.

2. GEWÄSSERNETZ UND KLÄRANLAGEN

2.1 Übersicht

Für die durchgeführte georeferenzierte Modellierung in Nordrhein-Westfalen wurden total 641 Kläranlagen (Stand Oktober 2011) berücksichtigt. Für den Vergleich mit Messdaten wurden insgesamt 51 GUES-Messstellen (GUES, Gewässerüberwachungssystem) berücksichtigt. Zusätzlich wurde die durch die Oberlieger verursachte stoffliche Vorbelastung der Gewässer an total 25 Gewässerstellen mitberücksichtigt. Die grösste Stofffracht durch Oberlieger wird im Rhein geführt, welcher rund. 33 Mio. Einwohner als Oberlieger hat (detailliertere Informationen siehe Abschnitt 4.3.1). Eine Übersicht über die Standorte der verschiedenen Kläranlagen und Messstellen ist in Abbildung 2 abgebildet. Die belasteten Stellen durch Oberlieger sind ebenfalls in der Graphik abgebildet (siehe Legende von Abbildung 2).

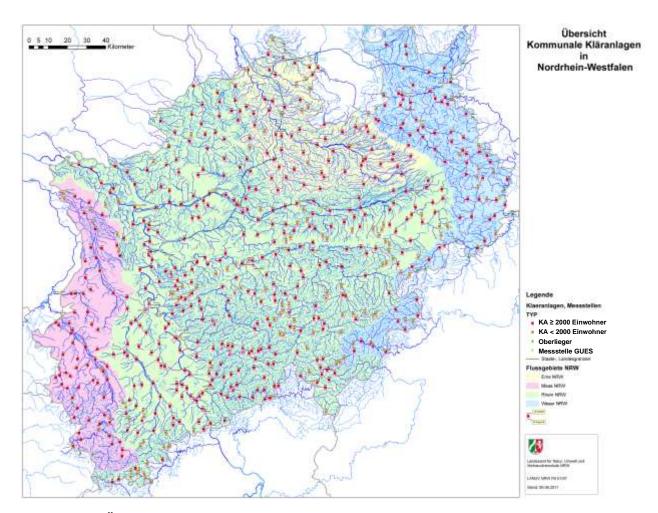


Abbildung 2: Übersicht kommunale Kläranlagen und zur Modellüberprüfung verwendete GUES-Messstellen in Nordrhein-Westfalen

2.2 Grössenverteilung der Kläranlagen

Die Grösse bezgl. angeschlossener Einwohner der 641 Kläranlagen in Nordrhein-Westfalen unterscheidet sich um einige Grössenordnungen. Insgesamt weisen 32 Kläranlagen mehr als 100'000 angeschlossene Einwohner auf, wobei an drei Kläranlagen mehr als 500'000 Einwohner angeschlossen sind. Bei 47 Kläranlagen liegen die Einwohnerzahlen zwischen 50'000 und 100'000, für die übrigen 562 Kläranlagen sind unter 50'000 Einwohner angeschlossen. Die Grössenverteilung ist in der Abbildung 3 angegeben.

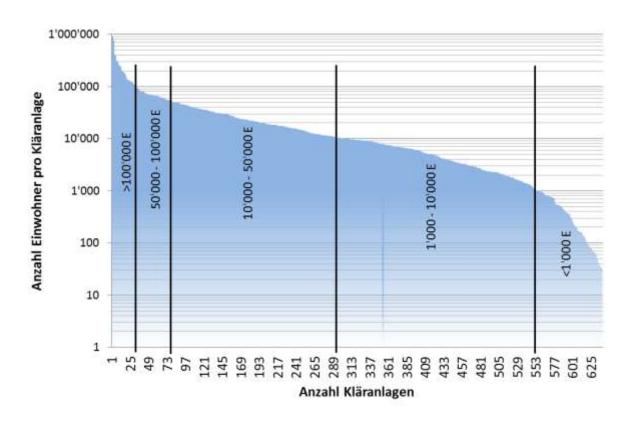


Abbildung 3: Grössenverteilung der Kläranlagen in Nordrhein-Westfalen

2.3 Abwassermengen

In kommunalen Kläranlagen fallen Abwässer aus (i) häuslichem Abwasser, (ii) Niederschlagswasser (in Mischkanalisationen) und (iii) Abwasser von Industrie und Gewerbe (industrielle und gewerbliche Indirekteinleiter) an. In der Abbildung 4 sind die Abwasserströme des Jahres 2010 in Nordrhein-Westfalen angegeben.

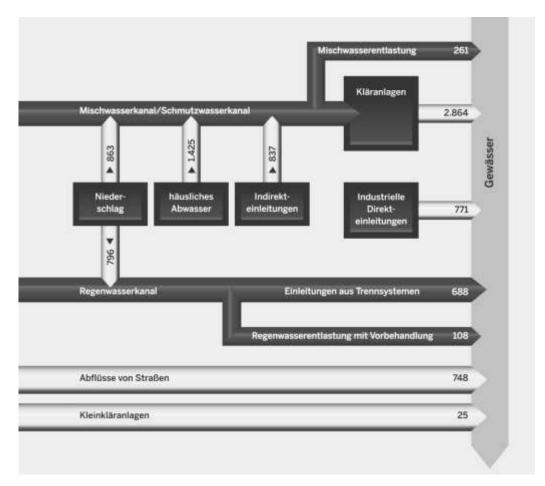


Abbildung 4: Herkunft und Menge des Abwassers im Jahr 2010 in Nordrhein-Westfalen. Auswertung 2010 (Quelle: ID-Kommunikation, Mannheim).

In Tabelle 1 sind die jährlichen Abwassermengen umgerechnet auf die Einwohnerzahlen als Abwassermenge pro Tag und Einwohner angegeben.

Tabelle 1: Jährlich anfallendes Abwasser im Bundesland Nordrhein-Westfalen. Quelle Abwasserdaten: Ministerium für Klimaschutz, Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen (MKUNLV), 2009.

	Mio. m ³ /Jahr	L/Jahr	Einwohner (E)	L/Jahr/E	L/Tag/E
Gesamtwasser über Kläranlagen (inkl. industrielle Indirekteinleiter und Nieder- schlagswasser)	2'768	2.768·10 ¹²	17'800'000	155'506	426
häusliches Abwasser	1'386	1.386·10 ¹²	17'800'000	77'865	213
häusliches Abwasser & Niederschlag	2'273	2.273·10 ¹²	17'800'000	127'697	350

2.4 Kläranlagen mit Flockungsfiltration

Kläranlagen mit bestehender Flockungsfiltration können durch geringeren Aufwand mit einer weitergehenden Reinigungsstufe nachgerüstet werden, um Mikroschadstoffe zu eliminieren. Mit dem Umbau auf Aktivkohlefiltration kann das Filtermaterial der Flockungsfiltration ausgetauscht und somit können die Investitionskosten im Wesentlichen gering gehalten werden (MKULNV - Expertenkommission Programm "Reine Ruhr" und Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz, 2012). In der Tabelle 2 sind die 100 Kläranlagen mit einer bestehenden Flockungsfiltration aufgelistet.

Tabelle 2: Kläranlagen mit Flockungsfiltration in Nordrhein-Westfalen. Insgesamt sind 100 Anlagen mit einem Flockungsfilter ausgerüstet.

324 Harsewinkel 57500 333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 4000 404 Paderborn, Sande 536000 3336 Kreuztal 17000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	KLA Nr.	Name	Ausbau EW	KLA Nr	Name	Ausbau EW
Ellendorf	1	Aachen-Soers	458000	608	Wuppertal-Buchenhofen	700000
6 Aachen-Süd 36335 621 Monhelm 166000 7 Alsdorf-Broichtal 30000 631 Velbert-Hespertal 19000 8 Bettendorf 50000 1509 Dorfmund-Schanhorst 190000 13 Herzogenrath-Worm 507000 1509 Borholt-Mussum 225000 14 Steinbusch 32000 1512 Borken 139100 18 Monschau 19000 1801 Born Bad Godesberg 110000 19 Katterherberg 5000 1802 Born Duisdorf 30000 21 Roetigen 7050 1804 Born-Salierweg 285000 28 Simmeriath 14000 1805 Kolin Stammheim 145000 28 Steinfurt 86000 1806 Köln Rodenkirchen 88000 31 Würselen-Euchen 40000 1807 Köln Rodenkirchen 88000 33 Aldenhoven 18000 1806 Köln Weiden 80000 34 Jülich 90000 1807 Köln Weiden 80000 45 Jülich 90000 1810	2		87000	609	Wuppertal-Kohlfurth	190000
Alsdorf-Broichtar 30000	6	Aachen-Süd	36335	621		
Bettendorf						
13 Herzogenrath-Worm						
14 Steinbusch 32000 1512 Borken 130100 18 Monschau 19000 1801 Bonn Bad Godesberg 110000 19 Kalterherberg 5000 1802 Bonn Duisdorf 30000 21 Roegen 7050 1804 Bonn Sailerweg 2885000 26 Simmerath 14000 1805 Kolin Stammherim 1450000 28 Steinfurt 86000 1805 Kolin Stammherim 1450000 31 Würselen-Euchen 40000 1807 Kölin Langel 110000 33 Aldenhoven 18000 1807 Kölin Langel 110000 34 Düren 461500 1809 Kölin Walden 80000 35 Düren 461500 1809 Kölin Walden 92000 45 Jülich 90000 1810 Bedburg Kaster 50500 54 Langerwehe 15000 1820 Elsdorf 20400 63 Schmidt 6000 1821 Bergheim Kenten 120000 64 Hambach 12000 1836 Hückeswagen 48000 70 Noervenich 15500 1838 Lindla'ar 12600 79 Bad Muenstereifel-Kirspen.Mia 20000 1878 Waldbröl Brenzingen 10200 108 Kessenich 132000 1878 Wermelskirchen 18000 112 Kall 111500 1878 Bornheim 24000 121 Folisdorf 1500 1879 Bornheim 24000 122 Marmagen 4500 1909 Rheinbach 12000 123 Marmagen 4500 1909 Rheinbach 12000 124 Vellerswist,Auf der Hochfahrt 25000 2112 Goch 121000 125 Schleiden 32000 1913 St. Augustin Menden 210000 126 Schleiden 32000 1913 St. Augustin Menden 210000 127 Schleiden-Germünd 25000 2112 Goch 121000 128 Schleiden 32000 2727 Vioho-Zentral 25000 129 Weilerswist,Auf der Hochfahrt 25000 2779 Lemgo-Grevenmarsch 97800 150 Weilerswist,Auf der Hochfahrt 25000 2779 Lemgo-Grevenmarsch 97800 151 Haaren 177370 2742 Detmol-Zentral 135000 152 Marsenberg 25000 2779 Lemgo-Grevenmarsch 97800 315 Gütersloh, Putzbagen 25000 3013 Gödersloh, Putzbagen 75500 326 Blefeldt, Brake 260000 3014 Dürnen 55000 327 Blefeldt, Brake 260000 3033 Riedenbero, Funderheim 55000						
18 Monschau 19000 1801 Bonn Bad Godesberg 110000 191 Kallerherberg 5000 1802 Bonn Duisdorf 30000 21 Roetgen 7050 1804 Bonn Duisdorf 30000 22 Roetgen 7050 1804 Bonn Sailerweg 285'000 28 Simmerath 14000 1805 Kolin Stammhelm 145'0000 28 Steinfurt 86000 1806 Kolin Rodenkirchen 88000 31 Würselen-Euchen 40000 1807 Kolin Rodenkirchen 80000 33 Aldenhoven 18000 1808 Kolin Welden 80000 34 Aldenhoven 18000 1808 Kolin Welden 80000 35 Düren 461'500 1809 Kolin Welden 80000 45 Jülich 90000 1810 Bedburg Kaster 505'00 54 Langerwehe 15000 1811 Bergheim Kenten 120000 63 Schmidt 6000 1812 Elsdorf 204'00 66 Hambach 12000 1836 Hückeswagen 480'00 70 Noervenich 155'00 1838 Lindfar 128'00 79 Bad Muenstereifel-Kirspen.Mia 20000 1857 Waldbröß Benzingen 102'00 186 Blankenheim 45'00 1861 Bergisch-Gladbach 166'000 112 Kall 115'00 1878 Bornheim 240'00 121 Kall 115'00 1878 Bornheim 240'00 127 Schleiden-Gemünd 230'00 1878 Bornheim 240'00 128 Schleiden 200'00 127 Schleiden-Gemünd 230'00 1909 Rheinbach Flerzheim 200'00 128 Schleiden 320'00 129 Krefeld 120'000 128 Schleiden 320'00 121 Goch 121						
19 Kalterherberg						
21 Roetgen 7050 1804 Bonn-Sallerweg 285000 28 Simmerath 14000 1805 Köln Stammheim 1450000 28 Steinfurt 86000 1806 Köln RodenKirchen 88000 31 Würselen-Euchen 40000 1807 Köln Langel 110000 33 Aldenhoven 18000 1808 Köln Welden 80000 35 Düren 461500 1809 Köln Wahn 92000 45 Jülich 90000 1810 Bedburg Kaster 50500 54 Langerwehe 15000 1817 Berdheim Kenten 120000 63 Schmidt 6000 1820 Elsdorf 20400 66 Hambach 12000 1830 Hückeswagen 48000 70 Noervenich 15000 1857 Bardheim Kenten 120000 79 Bad Muenstereifel-Kirspen.Mia 20000 1857 Waldbrüß Brenzingen 10200 96 Blankenheim 4500 1861 Bergisch-Gladbach 166000 1878 Bergisch-Gladbach 166000 1878 Bergisch-Gladbach 166000 1878 Bergisch-Gladbach 166000 1878 Bornheim 24000 1878 Bornheim 24000 1879 Rheinbach 27000 1878 Bornheim 24000 1879 Rheinbach 12700 1878 Bornheim 24000 127 Schleiden-Gemünd 22000 127 Schleiden-Gemünd 22000 128 Schleiden 32000 2112 Krefeld 120000 128 Schleiden 32000 2112 Krefeld 120000 128 Schleiden 32000 2112 Krefeld 120000 128 Schleiden-Gemünd 22000 2138 Russ-Ost 280000 144 Flahstrass 70000 2178 Russ-Ost 280000 158 Wassenberg 25000 2779 Bad Salzuffen 96000 159 364 Salzuffen 15000 15						
28 Simmerath						
Steinfurt						
31 Würselen-Euchen						
33 Aldenhoven						
35 Düren 461500 1809 Köln Wahn 92000 45 Jülich 90000 1810 8edburg Kaster 50500 54 Langerwehe 15000 1817 8ergheim Kenten 120000 63 Schmidt 6000 1820 Elsdorf 22000 200000 200000 20000 200000 200000 200000 200000 200000000					. 3-	
Second S						
54 Langerwehe 15000 1817 Bergheim Kenten 120000 63 Schmidt 6000 1820 Elsdorf 20400 66 Hambach 12000 1836 Hückeswagen 48000 70 Noervenich 15500 1838 Hückeswagen 12000 79 Bad Muenstereifel-Kirspen.Mia 20000 1857 Waldbröl Brenzingen 12000 96 Blankenheim 4500 1861 Bergisch-Gladbach 166000 108 Kessenich 132000 1873 Wermelskirchen 18000 112 Kall 11500 1878 Bornheim 24000 119 Mechernich 24000 1879 Bornheim 24150 121 Floisdorf 1500 1904 Rheinbach 27000 122 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 5000 127 Schleiden <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
63 Schmidt 6000 1820 Elsdorf 20400 66 Hambach 12000 1836 Hückeswagen 48000 70 Noervenich 15500 1838 Lindlar 12600 79 Bad Muenstereifel-Kirspen.Mia 20000 1857 Waldbröl Brenzingen 10200 96 Blankenheim 4500 1861 Bergisch-Gladbach 166000 108 Kessenich 132000 1873 Wermelskirchen 18000 112 Kall 11500 1878 Bornheim 24000 119 Mechernich 24000 1879 Bornheim Sechtem 24150 121 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 5000 127 Schleiden-Gemünd 23000 1913 St.Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 120000 128 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
66 Hambach 12'000 1836 Hückeswagen 48000 70 Noervenich 15500 1838 Lindlar 12600 79 Bad Muenstereifel-Kirspen.Mia 20000 1857 Waldbröl Brenzingen 10'200 96 Blankenheim 4500 1861 Bergisch-Gladbach 166'000 108 Kessenich 132000 1873 Wermelskirchen 186'000 112 Kall 11500 1878 Bornheim 24000 119 Mechernich 24000 1879 Bornheim Sechtem 24150 121 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 5000 127 Schleiden-Gemünd 23000 1913 St.Augustin Menden 21000 128 Schleiden 32000 2102 Kreleid 120000 129 Weilerswist,Auf der Hochfahrt 25000 2112 Goch 121000						
70 Neervenich 15500 1838 Lindlar 12600 79 Bad Muenstereifel-Kirspen.Mia 20000 1857 Waldbröl Brenzingen 10200 96 Blankenheim 4500 1861 Bergisch-Gladbach 166'000 108 Kessenich 132000 1873 Wermelskirchen 18000 112 Kall 11500 1878 Bornheim 24000 119 Mechernich 24000 1879 Bornheim Sechtem 24150 121 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 5000 127 Schleiden-Gemünd 23000 1913 St.Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 120000 129 Weilerswist,Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000						
79 Bad Muenstereifel-Kirspen.Mia 20000 1857 Waldbröl Brenzingen 10'200 96 Blankenheim 4500 1861 Bergisch-Gladbach 166'000 108 Kessenich 132000 1873 Wermelskirchen 1800 112 Kall 11500 1878 Bornheim 24000 119 Mechernich 24000 1879 Bornheim Sechtem 24150 121 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 5000 127 Schleiden-Gemünd 23000 1913 St.Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 120000 129 Weilerswist, Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2148 Neus-Ost 280000 144 Flabritarss 70000 2142 Brügen 16500						
96 Blankenheim 4500 1861 Bergisch-Gladbach 166'000 108 Kessenich 132000 1873 Wermelskirchen 1800 112 Kall 11500 1878 Bornheim 24000 119 Mechernich 24000 1879 Bornheim Sechtem 24150 121 Floisdorf 1500 1904 Rheinbach Flerzheim 50000 123 Marmagen 4500 1909 Rheinbach Flerzheim 50000 127 Schleiden Gemünd 23000 1913 St.Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 1200000 128 Schleiden 32000 2102 Krefeld 1200000 129 Weilerswist, Auf der Hochfahrt 25000 2112 Gooch 1211000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flahstrass 70000 2142 Brüggen 16500 146<						
108 Kessenich 132000 1873 Wermelskirchen 18000 112 Kall 11500 1878 Bornheim 24000 119 Mechernich 24000 1879 Bornheim 24000 121 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 50000 127 Schleiden-Gemünd 23000 1913 St.Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 120000 129 Weilerswist, Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flatsträss 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 148 Hückelhoven-Ratheim 95'000 2727 Voltho-Zentral 22000 153						
112 Kall 11500 1878 Bornheim 24000 119 Mechernich 24000 1879 Bornheim Sechtem 24150 121 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 5000 127 Schleiden-Gemünd 23000 2102 Krefeld 120000 128 Schleiden 32000 2102 Krefeld 120000 129 Weilerswist, Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flahstrass 70000 2142 Brüggen 16500 144 Flahstrass 70000 2143 Neuss-Ost 28000 145 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenber						
119 Mechernich 24000 1879 Bornheim Sechtem 24150 121 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 50000 127 Schleiden-Gemünd 23000 1913 St.Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 120000 129 Weilerswist, Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flahstrass 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmol-Zentral 135000 155<						
121 Floisdorf 1500 1904 Rheinbach 27000 123 Marmagen 4500 1909 Rheinbach Flerzheim 50000 127 Schleiden-Gemünd 23000 1913 St. Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 120000 129 Weilerswist, Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flahstrass 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 13500 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
123 Marmagen 4500 1909 Rheinbach Flerzheim 50000 127 Schleiden-Gemünd 23000 1913 St.Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 1200000 129 Weilerswist,Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flähstrass 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuffen 96000 154 Haaren 17370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 155 Wassenberg 25'000 2775 Bad Oeynhausen 78500						
127 Schleiden-Gemünd 23000 1913 St.Augustin Menden 210000 128 Schleiden 32000 2102 Krefeld 1200000 129 Weilerswist, Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flahstrass 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübecke 130000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
128 Schleiden 32000 2102 Krefeld 1200000 129 Weilerswist, Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flabstrass 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 155 Wassenberg 25'000 2775 Bad Oeynhausen 78500 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 13000 161						
129 Weilerswist, Auf der Hochfahrt 25000 2112 Goch 121000 137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flahstrass 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 13000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000						
137 Erkelenz-Mitte 48000 2138 Neuss-Ost 280000 144 Flahstrass 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzern-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Brake 26000 3013 Coesfeld 120000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
144 Flahstrass 70000 2142 Brüggen 16500 146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 25000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 26000 3014 Dülmen 55000						
146 Kirchhoven 40000 2145 Nette 86000 149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 15000						
149 Hückelhoven-Ratheim 95'000 2727 Vlotho-Zentral 22000 153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
153 Frelenberg 53000 2730 Bad Salzuflen 96000 154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500						
154 Haaren 17'370 2742 Detmold-Zentral 135000 155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 4	149	Hückelhoven-Ratheim				
155 Wassenberg 25'000 2759 Lemgo-Grevenmarsch 97'800 156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 40000 404 Paderborn, Sande 536000 3336 Kreuztal <td< td=""><td>153</td><td>Frelenberg</td><td></td><td></td><td></td><td></td></td<>	153	Frelenberg				
156 Wegberg-Mitte 46'790 2775 Bad Oeynhausen 78500 159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 40000 404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 1750	154			2742	Detmold-Zentral	135000
159 Arsbeck 30000 2781 Lübbecke 130000 161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 40000 404 Paderborn, Sande 536000 336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	155	Wassenberg				97'800
161 Obergartzem-Enzen 20000 2782 Minden, Leteln 260000 165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 40000 404 Paderborn, Sande 536000 336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	156	Wegberg-Mitte				
165 Urft-Nettersheim 14650 2797 Herford, ZKA 250000 301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3344 Hilchenbach Ferndorftal 40000 404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	159		30000	2781	Lübbecke	130000
301 Bielefeld, Heepen 235000 3013 Coesfeld 120000 302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 40000 404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	161	Obergartzem-Enzen	20000	2782	Minden, Leteln	260000
302 Bielefeld, Brake 260000 3014 Dülmen 55000 315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 40000 404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	165	Urft-Nettersheim	14650	2797	Herford, ZKA	250000
315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 334 Hilchenbach Ferndorftal 4000 404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	301	Bielefeld, Heepen	235000	3013	Coesfeld	120000
315 Gütersloh, Putzhagen 150600 3033 Emsdetten-Austum 150000 316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 40000 404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	302	Bielefeld, Brake	260000	3014	Dülmen	55000
316 Abwasserverband Obere Lutter 380000 3058 Ochtrup 49000 324 Harsewinkel 57500 3333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 4000 404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000	315	Gütersloh, Putzhagen		3033	Emsdetten-Austum	150000
324 Harsewinkel 57500 333 Freudenberg 26500 333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 4000 404 Paderborn, Sande 536000 3336 Kreuztal 17000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000						49000
333 Rietberg 39'000 3334 Hilchenbach Ferndorftal 4000 404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000						
404 Paderborn, Sande 536000 3336 Kreuztal 170000 601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000						40000
601 Düsseldorf-Süd 1'090'000 3347 Siegen 175000						
			123100			75000

2.5 Kläranlagen mit weitergehender Abwasserbehandlung für Mikroschadstoffe

In Nordrhein-Westfalen wurden bereits erste Kläranlagen mit einer weitergehenden Reinigungsstufe für Mikroschadstoffe ausgerüstet oder sind in Planung. In der Tabelle 3 sind diese Kläranlagen angegeben.

Tabelle 3: Kläranlagen in NRW mit einer weitergehenden Behandlungsstufe. Tabelle aus: (MKULNV - Expertenkommission Programm "Reine Ruhr" und Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz, 2012)

Kläranlage	Betreiber	Verfahren	EW- Ausbau	Art der Anlage	Betrieb
		W		*	
Buchenhofen	Wupperverband	Aktivkohle	700.000	Versuchsanlage	aktiv
Düren-Merken	Wasserverband Eifel-Rur	Aktivkohle	461.500	Versuchsanlage	aktiv
Aachen-Soers	Wasserverband Eifel-Rur	Membrananlage	458.000	Versuchsanlage	aktiv
Obere Lutter	Abwasserverb. Obere Lutter	Aktivkohle	380.000	Versuchsanlage	aktiv
Moers-Gerdt	LINEG	Membrananlage/PAK	250.000	Versuchsanlage	aktiv
Lage ZKW	Städt. Abwasserbetr. Lage	Aktivkohle	155.000	Vorplanung	nicht aktiv
Essen-Süd	Ruhrverband	Ozonierung	135.000	Vorplanung	nicht aktiv
Detmold	Stadt Detmold	Aktivkohle	115.000	Vorplanung	nicht aktiv
Kaarst-Nordkanal	Erftverband	Membranbelebungsanlage/	80.000	Versuchsanlage	aktiv
		(PAK)		(in Bezug aufPAK)	
Bad Oeynhausen	Stadt Bad Oeynhausen	Aktivkohle	78.500	Vorplanung	nicht aktiv
Schwerte	Ruhrverband	Ozonierung/Aktivkohle	50.000	großtechn. Versuchsanlage	aktiv
Ochtrup	Stadtwerke Ochtrup	Ozonierung/Aktivkohle	49.000	Behandlungsanlage	aktiv
Eitorf	Stadt Eitorf	Membrananlage	46.500	Teistrombehandlung	aktiv
Rietberg	Stadt Rietberg	Aktivkohle	39.000	Vorplanung	nicht aktiv
Duisburg Vierlinden	Stadt Duisburg	Ozonierung/Aktivkohle	34.000	großtechn. Versuchsanlage	aktiv
Büchel (Ruppicherroth-)	Aggerverband	Membranbelebungsanlage	25.000	Versuchsanlage	aktiv
Hünxe	Lippeverband	Membranbelebungsanlage	15.000	Teistrombehandlung	aktiv
Simmerath	Wasserverband Eifel-Rur	Membranbelebungsanlage	14.000	Versuchsanlage	aktiv
Bad Sassendorf	Lippeverband	Ozonierung	13.000	großtechn. Versuchsanlage	aktiv
Seelscheid	Aggerverband	Membranbelebungsanlage/	11.000	Versuchsanlage	aktiv
		(PAK)		(in Bezug aufPAK)	
Konzen	Wasserverband Eifel-Rur	Membranbelebungsanl., UV	9.700	Behandlungsanlage	aktiv
Bergheim-Glessen	Erftverband	Membranbelebungsanlage	9.000	Behandlungsanlage	aktiv
Monschau	Wasserverband Eifel-Rur	UV-Verfahren	7.000	Behandlungsanlage	aktiv
Woffelsbach	Wasserverband Eifel-Rur	Membranbelebungsanlage	6.200	Behandlungsanlage	aktiv
Monschau-Kalterherberg	Wasserverband Eifel-Rur	UV-Verfahren	5.000	Behandlungsanlage	aktiv
Xanten-Vynen	LINEG	Membrananlage/MBR	5.000	Versuchsanlage	aktiv
Rödingen	Erftverband	Membranbelebungsanlage	3.000	Behandlungsanlage	aktiv
Einruhr	Wasserverband Eifel-Rur	UV-Verfahren	2.800	Behandlungsanlage	aktiv
Hösel-Dickelsbach	BRW	Membrananlage	2.800	Vorplanung	nicht aktiv

Es wurde für die Stoffflussmodellierung eine höhere Entfernungsrate für die Anlagen angenommen, welche ein Aktivkohle- oder Ozonungs-Verfahren und eine grosstechnische Versuchsanlage oder eine Behandlungsanlage mit aktivem Status haben. Dies sind die Kläranlagen: Schwerte, Ochtrup, Bad Sassendorf und Duisburg-Vierlinden. Kaarst-Nordkanal hat eine Membrananlage. Teilstrombehandlungen und kleine Versuchsanlagen wurden im Modell nicht berücksichtigt.

2.6 Kläranlagen mit Einleitung in trinkwasserrelevante Gewässer

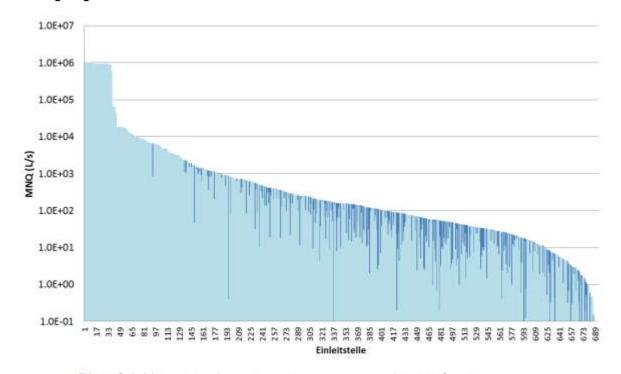

In der Tabelle 4 sind die Kläranlagen aufgelistet, welche in trinkwasserrelevante Gewässer einleiten. Als solche Kläranlagen wurden diejenigen definiert, welche weniger als 10 km flussaufwärts einer Trinkwassergewinnung einleiten. Bei insgesamt 13 Kläranlagen ist die Entfernung von der Einleitstelle bis zur nächsten Trinkwassergewinnung kleiner als zwei Kilometer.

Tabelle 4: Kläranlagen, die in ein trinkwasserrelevantes Gewässer einleiten.

		Einstufung Entfernung	
KLA ID	KA Nama	nächste Trinkwasser- An-	Anzahl mit TW ver-
KLA_ID	KA-Name		sorgte EW
		lage uh KLA	
1882	Hennef	kleiner 2 km	≤100.000
2801	Kalletal, ZKA Kalldorf (neu)	kleiner 2 km	≤100.000
1807	Köln Langel	kleiner 2 km	> 100.000
1932	Leverkusen-Bürrig	kleiner 2 km	> 100.000
910	Moers-Gerdt	kleiner 2 km	> 100.000
3055	Neuenkirchen/Wettringen	kleiner 2 km	≤100.000
1855	Reichshof Ufersmühle	kleiner 2 km	≤ 10.000
1527	Rhede	kleiner 2 km	≤100.000
926	Rheinberg	kleiner 2 km	≤100.000
2519	Schwerte	kleiner 2 km	≤100.000
1913	St.Augustin Menden	kleiner 2 km	> 100.000
1916	Troisdorf	kleiner 2 km	≤100.000
2513	Wickede	kleiner 2 km	≤100.000
1226	Altena	2-10 km	≤100.000
2410	Arnsberg-Neheim	2-10 km	≤100.000
2730	Bad Salzuflen	2-10 km	≤100.000
2413	Bestwig-Velmede	2-10 km	≤100.000
1803	Bonn Beuel	2-10 km	≤100.000
1802	Bonn Duisdorf	2-10 km	≤100.000
1804	Bonn Salierweg	2-10 km	> 100.000
1880	Bornheim Hersel	2-10 km	≤ 10.000
2418	Brilon-Madfeld	2-10 km	≤ 10.000
2742	Detmold-Zentral	2-10 km	> 100.000
2132	Dormagen-Rheinfeld	2-10 km	≤100.000
1256	Dortmund-Klusenberg	2-10 km	≤ 10.000
909	Duisburg-Rheinhausen	2-10 km	> 100.000
2101	Düsseldorf-Nord	2-10 km	> 100.000
911	Essen-Burgaltendorf	2-10 km	≤100.000
917	Essen-Kettwig	2-10 km	≤100.000
3308	Finnentrop	2-10 km	≤100.000
1206	Hagen Vorhalle	2-10 km	> 100.000
1218	Hattingen	2-10 km	≤100.000
1886	Hennef Greuelsiefen	2-10 km	≤ 10.000
326	Herzebrock	2-10 km	≤100.000
2753	Kalletal, Varenholz-Stemmen	2-10 km	≤ 10.000
108	Kessenich	2-10 km	> 100.000
1806	Köln Rodenkirchen	2-10 km	≤100.000
1805	Köln Stammheim	2-10 km	> 100.000
1809	Köln Wahn	2-10 km	≤100.000
2102	Krefeld	2-10 km	> 100.000
1247	Menden	2-10 km	> 100.000
621	Monheim	2-10 km	> 100.000
3341	Netphen-Deuz	2-10 km	≤100.000
1903	Niederkassel	2-10 km	≤100.000
404	Paderborn, Sande	2-10 km	> 100.000
2449	Schmallenberg	2-10 km	≤100.000
2448	Schmallenberg-Westfeld	2-10 km	≤ 10.000
3095	Telgte	2-10 km	≤100.000
2727	Vlotho-Zentral	2-10 km	≤100.000
1826	Wesseling	2-10 km	≤100.000
1827	Wesseling Urfeld	2-10 km	≤ 10.000
1224	Witten-Herbede	2-10 km	≤100.000
25	Woffelsbach	2-10 km	≤ 10.000

2.7 Verteilung der Abflussdaten (Mittlerer Niedrigwasserabfluss, MNQ)

Die Grössen der Vorfluter an den 641 berücksichtigten Einleitstellen der Kläranlagen unterscheiden sich bis zu sechs Grössenordnungen. Während die grössten Vorfluter MNQ von rund 1.000.000 L/s aufweisen, haben die kleinsten berücksichtigten Vorfluter MNQ von weniger als 1 L/s. In der Abbildung 5 sind die MNQ-Werte in Liter pro Sekunde in einer logarithmischen Darstellung abgebildet.

- MNQ (L/s) korrigiert (kumulierte Abwassermenge, falls MNQ < Abwassermenge</p>
- MNQ Original Angaben vom LANUV (L/s)

Abbildung 5: Verteilung der MNQ Werte der Vorfluter an den berücksichtigten Einleitstellen. Der dunkelblaue Teil wird zum originalen MNQ dazugezählt um auf dem Abfluss zu kommen.

Die MNQ in kleineren Gewässern sind teilweise mit Hilfe von Einzugsgebietsgrössen und deren Abflussspenden ermittelt worden und beruhen nicht direkt auf Pegelmessungen. Dies kann, insbesondere in Gewässern mit hohem Abwasseranteil, zu einer deutlichen Unterschätzung des MNQ führen. Um zu verhindern, dass aus diesem Grund teilweise zu tief geschätzte MNQ-Werte, unrealistisch hohe Konzentrationen berechnet werden, wurden alle MNQ-Werte mit der kumulierten Abwassermenge an der entsprechenden Einleitstelle verglichen. Falls die kumulierte Abwassermenge grösser als der abgeschätzte MNQ war, wurde der MNQ durch die kumulierte Abwassermenge an der entsprechenden Einleitstelle ersetzt, d.h. es wurde für diese Einleitstellen ein Abwasseranteil von 100% angenommen. Um die kumulierten Abwassermengen zu berechnen wurden die gemessenen Mengen (Durchschnittswerte 2010, vom LANUV zur Verfügung gestellt) verwendet.

3. STOFFDATEN

3.1 Voraussetzungen

Eine entscheidende Grösse für die Modellierung des Stoffflusses einer einzelnen Substanz ist deren Stoffeintrag, welcher über die Kläranlage ins Gewässer eingeleitet wird. Die Stoffe müssen die folgenden Voraussetzungen erfüllen, damit die Rahmenbedingungen für die Berechnung mit dem hier angewendeten Stoffflussmodell erfüllt sind:

- Räumlich und zeitlich homogener und konstanter Verbrauch.
- Eliminationsraten in konventionellen Kläranlagen bekannt (oder Ablaufdaten vorhanden).
- Kein oder nur unwesentlicher biologischer Abbau innerhalb der Fliesszeit der betrachteten Gewässer.
- Ausschliesslicher oder mindestens dominanter Eintrag über kommunales Abwasser (keine relevanten diffusen Quellen).

Wenn die jährlichen Verbrauchszahlen eines bestimmten Stoffes bekannt sind, kann mit Hilfe verschiedener Annahmen die Emission ins Gewässer abgeschätzt werden. Folgende stoffspezifischen Informationen müssen dazu vorhanden sein:

- Gesamter j\u00e4hrlicher landesspezifischer Vertrieb (z.B. Verkaufsmenge in kg/Jahr)
- Stoffmenge welche unverändert in die Kanalisation gelangt (bei Arzneimittel müssen dabei beispielsweise die Metabolisierung- und Ausscheideraten bekannt sein)
- Entfernung aus dem Abwasser in heutigen Kläranlagen (insbesondere Sorption an Feststoffe resp. Klärschlamm und Abbau in der biologischen Reinigungsstufe)

Bei der Stoffflussmodellierung für die Schweiz hat sich gezeigt, dass mit den oben genannten Annahmen für viele Stoffe eine gute Übereinstimmung zwischen modellierten Stofffrachten und aus Messungen über den Abfluss hochgerechneten Stofffrachten erreicht werden kann (Ort, et al., 2007). Gute Übereinstimmungen wurden unter anderem für folgende Stoffe gefunden:

- Benzotriazol
- Carbamazepin
- Clarithromycin
- Diclofenac
- Sulfamethoxazol

Die Zuverlässigkeit der Resultate des Stoffflussmodells hängt entscheidend von der Genauigkeit der Eingangsgrössen ab. Im Projekt "Organische Mikroverunreinigungen im Bodensee"

wurden deshalb mehrere Zu- und Ausläufe von Kläranlagen auf die im Modell verwendeten Substanzen analysiert und so die Modellannahmen überprüft (Longrée, et al., 2011). Bei gewissen Substanzen waren keine Verbrauchszahlen verfügbar. Diese wurden mit Hilfe von Messungen des Kläranlagenzulaufs abgeschätzt. Analog wurde die Überprüfung der Eingangsgrössen in diesem Projekt für Nordrhein-Westfalen durchgeführt.

3.2 Stoffauswahl und -daten

Basierend auf den verfügbaren Stoffdaten für Nordrhein-Westfalen und den Erfahrungen mit dem Stoffflussmodell aus der Schweiz wurden verschiedene Mikroschadstoffe ausgewählt und in zwei Prioritätsgruppen eingeteilt:

- Priorität A: Stoffe, welche in einer ersten Phase modelliert werden sollen und zur Modellüberprüfung herangezogen werden können (Verbrauchszahlen, Informationen zur
 Metabolisierung und Resorption, Abbaudaten in Kläranlagen und ausreichende Messdaten oberhalb der Bestimmungsgrenze in Oberflächengewässern vorhanden).
- Priorität B: Stoffe, die in einem Folgeprojekt modelliert werden könnten, für welche aber aufgrund der aktuellen Datenlage nur eine eingeschränkte Überprüfung möglich ist. Für diese Stoffe werden alle Inputdaten und Vergleiche der Inputgrössen mit Messungen in Kläranlagen in diesem Bericht zusammengefasst und angegeben. Die Stoffflüsse und Konzentrationen wurden für die Stoffe der Priorität B hier nicht berechnet.

In der Tabelle 5 ist die Stoffauswahl für dieses Projekt, aufgeteilt nach den oben angegebenen Prioritätsgruppen, wiedergegeben.

Tabelle 5: Vorschläge für Substanzen, welche mit dem Stoffflussmodell berechnet werden können und in repräsentativen Kläranlagen in Nordrhein-Westfalen vom LANUV gemessen wurden.

Priorität A	Priorität B (In dieser Arbeit nicht ausgewertet)
Benzotriazol	Acesulfam
Carbamazepin	Amidotrizoesäure
Clarithromycin	Atenolol
Diclofenac	lopromid
Metoprolol	Iomeprol
Sotalol	lopamidol
Sulfamethoxazol	Naproxen
	Sucralose
	Trimethoprim

Für alle Mikroschadstoffe mit Priorität A und B, sind die Verkaufsmengen, der Anteil der Substanzen welcher in die Kanalisation gelangt (nicht metabolisiert resp. unverändert wieder ausgeschieden wird) und der Abbau in Kläranlagen in Tabelle 6 wiedergegeben. Zwischen den verschiedenen Ausbaustandards (Nitrifikation, Denitrifikation, Schlammalter etc.) wird in einer ersten Näherung kein Unterschied betreffend dem Abbau der Spurenstoffe berücksichtigt.

Tabelle 6: Stoffspezifische Inputdaten des Stoffflussmodells: Verbrauchszahlen, Metabolisierung im Körper und Eliminationsraten in der Kläranlage. Die sieben Substanzen, welche mit dem Stoffflussmodell berechnet werden sind fettgedruckt dargestellt.

Substanz	Verkaufs- mengen (kg/a) Anteil in Kanal unverändert (nicht metaboli- siert im Körper)		Mittlerer Abbau in bestehenden Kläranlagen	Mittlere Eliminations-/ Abbauleistung von weitergehenden Ver- fahren (ø PAK und Ozonung)
		Arzneimittel		3.
(Amidotrizoesäure*)	13'960	1	0	0.1
Atenolol	1'659	0.6	0.71	0.9
Carbamazepin	14'039	0.1	0.11	0.9
Clarithromycin	3'345	0.28	0.22	0.95
Diclofenac	19'873	0.16	0.34	0.9
(lopamidol*)	4'340	1	0	0.45
(lopromid*)	10'180	1	0.54	0.55
(lomeprol*)	38'340	1	0	k.A.
Metoprolol	33'970	0.2	0.4	0.9
Naproxen	3'232	0.95	0.7	0.85
Sotalol	1'706	1	0.27	0.95
Sulfamethoxazol	7'746	0.45	0.57	0.8
Trimethoprim	1'657	0.15	0.32	0.9
	Korrosionsso	hutzmittel und kü	nstliche Süssstoffe	
Benzotriazol	37'000**	1	0.3	0.85
Acesulfam	49'000***	1	0.1***	k.A.
Sucralose	3'560***	0.98	0.1***	k.A.

Datenquellen:

<u>Verkaufsmengen</u>: Die Verkaufsmengen der Arzneimittel basieren auf Erhebungen für Deutschland für das Jahr 2009 (IMS Health, 2009) unter der Annahme, dass in Nordrhein-Westfalen pro Kopf der gleiche Verbrauch herrscht wie über ganz Deutschland. <u>Anteil in Kanalisation</u>: Basierend auf Metabolisierung- und Resorptionsdaten aus dem Arzneimittel-Kompendium der Schweiz (Documed AG, 2011).

Durchschnittliche Elimination in bestehenden Kläranlagen und Elimination weitergehendes Verfahren: (Götz, et al., 2010).

^{*}Kontrastmittel werden nicht flächendeckend konsumiert. Es ist anzunehmen, dass abhängig von der Kläranlage (Spitalanschluss oder nicht, Grösse des Spitals ans Anteil am Abwasser) starke Unterschiede auftreten werden. Das Stoffflussmodell ist nur eingeschräpkt (nur für grössere Gewässer) geeignet für die Modellierung des Stoffflusses von Kontrastmitteln

eingeschränkt (nur für grössere Gewässer) geeignet für die Modellierung des Stoffflusses von Kontrastmitteln.
**Wert aus (Hollender, et al., 2007) basierend auf Verkaufszahlen von Henkel, hochgerechnet für Nordrhein-Westfalen.

^{***} kg pro Jahr in der Schweiz aus Kläranlagen Abläufen geschätzt (Moschet, 2010), hochgerechnet für Nordrhein-Westfalen. Eliminationsraten wurden in diesem Projekt ebenfalls bestimmt.

3.3 Messungen von Mikroschadstoffen in Kläranlagen

Zur Überprüfung der über die Verkaufszahlen berechneten Stoffflüsse (Abschnitt 3.2) wurden Messungen in verschiedenen Kläranlagenabwässern in Nordrhein-Westfalen durchgeführt.

In Abbildung 6 ist der Stofffluss von Mikroschadstoffen aus dem häuslichen Abwasser über kommunale Kläranlagen in die Gewässer dargestellt. Mit der Messung der Substanzen beim Zu- und Ablauf können verschiedene Parameter, welche für die Stoffflussmodellierung nötig sind, erhoben werden, resp. vorhandene Parameter überprüft werden.

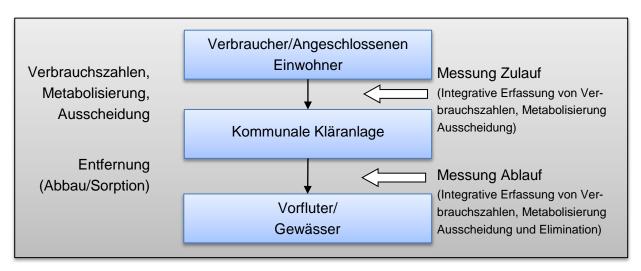


Abbildung 6: Stofffluss in der Kläranlage und entsprechende Informationen aus den Messungen.

Aus den Messungen des Zulaufs und des Ablaufs kann die Abbaurate für die betrachteten Substanzen bestimmt werden. Um eine zuverlässige Schätzung der Elimination zu erhalten müssen mindestens 24h-Sammelproben verwendet werden oder, je nach Wasseraufenthaltszeit in der Kläranlage, Sammelproben über einen grösseren Zeitraum. Durchschnittliche Eliminationsraten gemittelt über verschiedenen Kläranlagen sind unter anderem in Götz et al. (2010), Mikroverunreinigungen - Beurteilung weitergehender Abwasserreinigungsverfahren anhand Indikatorsubstanzen, zu finden. Ebenfalls gibt es verschiedene Untersuchungen im Bundesland Nordrhein-Westfalen, beispielsweise gibt es Daten aus Untersuchungen auf der Kläranlage Schwerte, auf welcher eine Ozonierung und eine Pulveraktivkohlereinigungsstufe getestet wurden (Ruhrverband, 2010), Untersuchungen zu Elimination von Arzneimittelrückständen auf verschiedenen Anlagen (Grünebaum, 2011) und diverse Studien auf andern einzelnen Anlagen in NRW (Merten, 2011; Pinnekamp, 2012; Herbst, et al., 2012).

3.4 Vergleich der berechneten Inputdaten mit Messungen an Kläranlagen

Das LANUV hat unter anderem zur Überprüfung der Eingangsgrössen für die Stoffflussmodellierung eine umfangreiche Messkampagne in Kläranlagenausläufen im Frühling 2012 durchgeführt. In der Messkampagne wurden 72h-Sammelproben verwendet. Es wurden dabei 13 grosse und mittelgrosse Kläranlagen mit insgesamt über 3'000'000 angeschlossenen Einwohnern zu drei unterschiedlichen Zeitpunkten untersucht.

Die in den Kläranlagen gemessenen Konzentrationen sind im Anhang 2: Messdaten der Konzentrationen im Abwasser wiedergegeben. Die Konzentrationen wurden mit der in der Messperiode gemessenen Abwassermenge und den angeschlossenen Einwohnern in einwohnerspezifische Stofffrachten für die einzelnen Kläranlagen umgerechnet. Die einwohnerspezifischen Stofffrachten wurden über alle Kläranlagen gemittelt. Die Ergebnisse sind zusammen mit den aus den Verbrauchszahlen abgeschätzten Werten und Werten aus zwei anderen Messkampagnen (LANUV 2012 und Bodensee-Projekt) in der Tabelle 7 dargestellt.

Tabelle 7: Einwohnerspezifische Stofffrachten in die Gewässer. Die aus den Verbrauchszahlen abgeschätzten Werte beinhalten mittlere Abbauraten in der biologischen Stufe von Kläranlagen und die Metabolisierung von Arzneimitteln im Körper. Die sieben Substanzen, welche mit dem Stoffflussmodell berechnet werden sind fettgedruckt dargestellt.

Substanz	Aus Verbrauchs- zahlen/ Modelldaten (mg/d/Einw.)	Aus LANUV Messkampagne 2012 (mg/d/Einw.)	Aus LANUV Messkampagne 2010 (mg/d/Einw.)	Aus Bodensee Messkampagne 2010 (mg/d/Einw.)
		Arzneimittel		
(Amidotrizoesäure)	2.2	1.2		
Atenolol	0.04	0.11		
Carbamazepin	0.27	0.26	0.30	0.25
Clarithromycin	0.11	0.13	0.04	
Diclofenac	0.32	0.49	0.25	0.39
(Iopamidol)	0.67	1.1		
(Iopromid)	0.72	0.28		
(Iomeprol)	5.9	2.8		
Metoprolol	0.62	0.58	0.73	
Naproxen	0.14	0.09		
Sotalol	0.19	0.18	0.38	
Sulfamethoxazol	0.23	0.20	0.30	0.18
Trimethoprim	0.03	0.07		
	Korrosionsschu	tzmittel und künstli	che Süssstoffe	
Benzotriazol	3.9	1.8		1.1
Acesulfam		8.4		11
Sucralose		0.38		0.61

Datenguellen:

LANUV Messkampagne 2012 auf 13 grossen und mittelgrossen Kläranlagen, LANUV 2012

Datenzusammenstellung aus Messungen im Jahr 2010, LANUV 2012

Messungen in Kläranlagenausläufen im Bodenseeeinzugsgebiet in Baden-Württemberg, der Schweiz und Österreich (Moschet, 2010)

Die Daten aus der neuen LANUV Messkampagne vom Frühling 2012 sind am umfangreichsten und werden daher für den Vergleich mit den aus den Verbrauchszahlen abgeschätzten Werten und ggf. für deren Korrektur verwendet. Die Werte aus der älteren Messkampagne des LANUV und dem Bodenseeprojekt zeigen die Werte in der gleichen Grössenordnung wie die neuen Messdaten der Kampagne 2012 des LANUV.

3.5 Schlussfolgerungen und Inputdaten für die Stoffflussmodellierung

Für die folgenden organischen Spurenstoffe wurde eine gute Übereinstimmung zwischen den Messdaten in Kläranlagen und den theoretisch aus Verbrauchszahlen berechneten Konzentrationen im gereinigten Abwasser gefunden:

- Carbamazepin
- Clarithromycin
- Diclofenac
- Metoprolol
- Sotalol
- Sulfamethoxazol

Für Benzotriazol ist der aus den Verbrauchszahlen abgeschätzte Wert rund doppelt so hoch wie die Werte, welche in der neusten LANUV Messkampagne von 2012 eruiert wurden. Die Verbrauchszahlen von Benzotriazol wurden aufgrund der Herstellerangaben von Henkel aus dem Jahr 2006 berechnet (Hollender, et al., 2007). Benzotriazol wird zu einem Grossteil in Geschirrspülmittel eingesetzt. Möglicherweise ist der Einsatz von Benzotriazol in Geschirrspülmitteln über die letzten 6 Jahre signifikant zurückgegangen, was den Unterschied zwischen den aktuellen Messwerten und den älteren Verbrauchszahlen erklären könnte.

Als Inputdaten für die Stoffflussmodellierung von Carbamazepin, Clarithromycin, Diclofenac, Metoprolol, Sotalol und Sulfamethoxazol wurden die aus den Verbrauchszahlen resultierenden Einträge verwendet.

Für **Benzotriazol** wurde der aus der **Messkampagne in Kläranlagen-Abläufen** resultierende Wert als Eingangsgrösse für das Stoffflussmodell verwendet.

3.6 Messungen von Mikroschadstoffen in Gewässern

Im Bundesland Nordrhein-Westfalen wurden in den letzten Jahren zur Bestimmung des IST-Zustands sehr viele Messungen von Mikroschadstoffen in Oberflächengewässern durchgeführt. In der Tabelle 8 sind die statistischen Verteilungen der Messungen für ausgewählte Mikroschadstoffe aus kommunalem Abwasser wiedergegeben.

Tabelle 8: Statistische Messwertverteilung (gemessene Konzentrationen) in den Gewässern NRW's 2008-2010, teilw. 2011 zu den vom LANUV ausgewählten Substanzen an 51 verschiedenen GUES-Messstellen.

	Messungen in Nordrhein-Westfalen 2008-2011 (LANUV, 2011)										
	Mittelwert (ng/L)	Werte >BG	10% Perzentil (ng/L)	90% Perzentil (ng/L)	Max. (ng/L)						
		Arzneimitte	el								
Amidotrizoesäure	577	94%	115	1'100	51	5'700					
Carbamazepin	226	55%	49	510	13	3'600					
Clarithromycin	61	45%	26	118	25	410					
Diclofenac	177	89%	41	360	25	2'120					
Iopamidol	718	92%	130	1'500	51	9'600					
Metoprolol	261	93%	49	570	20	3'100					
Sotalol	119	79%	32	220	13	1'300					
Sulfamethoxazol	108	69%	31	215	12	730					
	Korro	sionsschut	zmittel								
Benzotriazol 1'041 100% 171 1'740 46											

Für Süssstoffe liegen für NRW bislang keine Gewässerdaten vor.

Zur Überprüfung des Modells anhand von Messwerten im Gewässer, wurden vom LANUV für insgesamt 51 GUES-Messstellen Daten von verschiedenen Mikroschadstoffen zur Verfügung gestellt. Es wurden nur Messstellen berücksichtigt, für die auch Abflussdaten vorhanden waren, da diese benötigt werden um die gemessenen Konzentrationen in Stoffflüsse umzurechnen.

In der Tabelle 9 ist die Anzahl der erhobenen Messwerte pro GUES-Messstelle und Substanz angegeben. Die Anzahl Messwerte variiert zwischen insgesamt 35 Messungen an 20 Messstellen (Benzotriazol und Methylbenzotriazol) und insgesamt rund 1'600 Messwerten verteilt auf alle 51 berücksichtigten GUES-Messstellen (Carbamazepin). Für die meisten Stoffe stehen rund 500 Messwerte zur Verfügung.

Tabelle 9: Anzahl Messwerte an den berücksichtigten GUES-Messstellen. Angabe der Anzahl Messwerte im Zeitraum 2008-2010, teilw. 2011 pro Substanz und Messstelle. Die Anzahl Positivbefunde (Werte über der Bestimmungsgrenze), die mittleren Konzentrationen und Frachten sind in Anhang 3 wiedergegeben.

	Amidotrizoesäure	Atenolol	Benzotriazol	Bezafibrat	Carbamazepin	Clarithromycin	Diclofenac	Erythromycin	Ibuprofen	lomeprol	lopamidol	lopromid	Metoprolol	Naproxen	Sotalol	Sulfamethoxazol	Methylbenzotriazol	Trimethoprim	Messwerte pro GUES Messstelle
(A 50) vor Mdg. in die Lippe					36														36
(L 14) in Lippborg	21	25	1	25	42	23	24	23	25	21	21	21	25	25	25	24	1	25	407
(M 75) vor Mdg. in die Ruhr			1		36												1		39
AM PEGEL HASPE		4		4	20	3	4	3	4				4	4	4	4		4	62
AN DER LANDESGRENZE	10	28		28	116	23	28	24	28	10	10	10	28	28	28	27		28	462
Bad Godesberg	13	14		14	19		9		14	13	13	13	14	9	14	14		14	187
BEI KLEIN-VERNICH					23														23
Düsseldorf-Flehe	22	24	2	24	50	7	20	8	24	22	22	22	24	17	24	24	2	24	364
E 17a bei Einen - EU	2	14	2	14	46	11	14	11	14	2	2	2	14	14	14	14	2	14	212
E 1a uh KA Rheine-Nord - EU	1	13	2	13	35	9	13	10	13	1	1	1	13	13	13	13	2	13	183
Emscher-Mündung	30	24	2	24	46	9	19	9	23	30	30	30	24	18	24	24	2	24	394
Eppinghoven	31	25	2	25	46	8	20	9	25	31	31	31	25	19	25	25	2	25	407
Fröndenberg	42	34	2	34	59	16	30	19	34	42	42	42	34	27	34	34	2	34	563
Hattingen	14	14	2	14	15	1	9	1	14	14	14	14	14	8	14	14	2	14	194
in Schötmar	8	8		8	42	7	8	8	8	8	8	8	8	8	8	8		8	161
in Troisdorf; Str-Br	7	11		11	20	8	11	10	11	7	7	7	11	11	11	10		11	164
Kohlfurther Brücke		8		8	17	6	8	6	8				8	7	8	8		8	100
Lobith	13	16		16	25	2	11	1	16	13	13	13	16	10	16	16		16	213
M2 uh Wöstebach		1		1	20	1	1	1	1				1	1	1	1		1	32
Menden	29	24	2	24	36	8	19	9	24	29	29	29	24	20	24	24	2	24	382
Mülheim-Kahlenberg	43	36	2	36	61	16	31	19	36	43	43	43	36	29	36	36	2	36	586
Opladen	29	25	2	25	39	8	20	9	25	29	29	29	25	19	25	25	2	25	392
PEGEL HOHENLIMBURG	18	20	1	20	42	17	20	18	20	18	18	18	20	20	20	20	1	20	339
Pegel Porta	10	11	2	11	20	8	11	10	11	10	10	10	11	10	11	10	2	11	181
Pegel Weilerswist					21														21
R.Arm uh Amelunxen	1	1		1	15	1	1	1	1	1	1	1	1	1	1	1		1	30
Sf1 vor Vechte/ mün1010 - EU	1	13		13	44	11	13	11	13	1	1	1	13	13	13	11		13	189
Str-Br in Au	9	11		12	25	7	12	9	12	9	9	9	12	12	12	11		12	183
Stuerzelberg	13	14		14	16		9		14	13	13	13	14	9	14	14		14	184
UH HARKORTSEE	5	1		1	9	1	1	1	1	5	5	5	1	1	1	1		1	40
UH HATTINGEN	4	6		6	16	5	6	6	6	4	4	4	6	6	6	6		6	99
uh KA Bad Oeynhausen	10	9	2	8	34	7	9	7	9	10	10	10	9	8	9	9	2	9	173
uh KA Kirchlengern	7	7		7	40	6	7	7	7	7	7	7	7	7	7	7		7	144
uh KA Warburg	1	1		1	12	1	1	1	1	1	1	1	1	1	1	1		1	27
uh MdgRotbach					22														22
uh Mutzbach oh. Mdg in Wupper	7	11		11	33	8	11	10	11	7	7	7	11	11	11	11		11	178
uh. Freibad (NL)	12	14		14	35	11	14	12	14	12	12	12	14	14	14	13		14	231
V MDG I D RUHR	21	25	2	25	72	21	25	22	25	21	21	21	25	24	25	25	2	25	436
v Mdg in Werre (hf)	6	7		7	30	7	7	7	7	7	6	7	7	7	7	6		7	132
V2, vor Mdg i d Steinfurter Aa	1	12		12	34	10	12	10	12	1	1	1	12	12	12	12		12	170
Vlodrop(=Z 3)	15	24	1	24	46	22	24	22	24	15	15	15	24	23	24	24	1	24	378
vor Mdg der Wörmke	2	2		2	12	2	2	2	2	2	2	2	2	2	2	2		2	42
vor Mdg in die Lippe	1	1		1	13	1	1	1	1	1	1	1	1	1	1	1		1	28
vor Mdg in Ems	6	6		6	31	6	6	6	6	6	6	6	6	6	6	5		6	120
W2 uh Havichhorster Mühle/uh	T	9		9	42	6	9	7	9				9	9	9	8		9	138
Wesel	42	25	1	25	51	9	20	9	25	42	42	42	25	18	25	25	1	25	453
WkSt Rhein-Nord Kleve-Bimmen	42	36	2	36	62	18	31	19	36	42	42	42	36	30	36	36	2	36	586
WkSt Süd/Bad Honnef	30	25	2	25	49	7	20	8	25	30	30	30	25	19	25	25	2	25	404
Messwerte pro Stoff	579	639	35	639	1'675	358	571	386	639	580	579	580	640	551	640	629	35	640	10'491

Die 51 berücksichtigten GUES-Messstellen sind in grösseren und kleineren Gewässern in NRW über das ganze Bundesland verteilt. In der Abbildung 7 ist die Verteilung der GUES-Messstellen in NRW dargestellt.

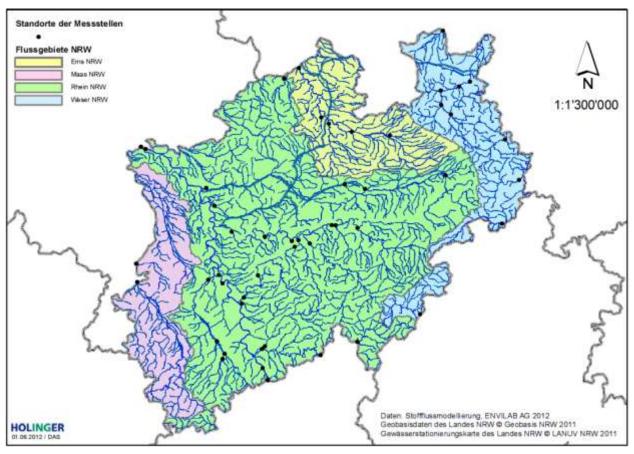


Abbildung 7: Verteilung der für die Modellüberprüfung berücksichtigten Gewässergütemessstellen (GUES) in NRW.

3.7 Wirkungsbasierte Qualitätskriterien

3.7.1. Wirkungsbasierte Qualitätskriterien des Oekotoxzentrums

Das Schweizerische Zentrum für angewandte Ökotoxikologie (Oekotoxzentrum) hat, ebenso wie das Umweltbundesamt in Berlin und die EU-Kommission, Qualitätskriterien für zahlreiche Mikroschadstoffe hergeleitet. Zur Ableitung wird dabei das Technical Guidance Document der Europäischen Union (EU) angewandt. Die dazu verwendeten ökotoxikologischen Effektdaten und die resultierenden Qualitätskriterien werden in Zusammenarbeit mit externen Experten und unabhängigen Gutachtern beurteilt und auf ihre Validität überprüft (Oekotoxzentrum, 2012).

Für ökotoxikologische Risikobewertungen werden Umweltkonzentrationen mit den dazugehörigen Qualitätskriterien verglichen. Ist die Umweltkonzentration grösser als das Qualitätskriterium, so kann ein Risiko für Wasserorganismen angenommen werden. Ein Vergleich der Umweltkonzentration mit dem akuten Qualitätskriterium (MAC-EQS = maximal zulässige Akutkonzentration) kann helfen, um abzuschätzen, ob eine Schädigung der Organismen innerhalb der nächsten 24-96 h zu erwarten ist. Mit den chronischen Qualitätskriterien (AA-EQS = zulässige durchschnittliche Jahreskonzentration), die für ein Monitoring der Gewässerqualität empfohlen werden, können Belastungen über einen längeren Zeitraum abgeschätzt werden. Für kontinuierliche Einträge von Mikroschadstoffen durch gereinigtes Abwasser ist besonders das chronische Qualitätskriterium relevant. So können die Organismen vor den Folgen von Langzeitbelastungen geschützt werden (Oekotoxzentrum, 2012). Aktuelle Vorschläge des Oekotoxzentrums und das Herleitungsverfahren sind auf der Homepage http://www.oekotoxzentrum.ch/qualitaetskriterien publiziert.

3.7.2. Trinkwasserspezifische Zielwerte

Die Wasser-Rahmenrichtlinie der EU (WRRL) kennt keine Umweltqualitätsnormen (UQN) zum Schutz der Gewässer vor ökologisch relativ untoxischen, jedoch rohwasserrelevanten Stoffen. Zu diesen gehören auch viele Humanarzneimittel, wie beispielsweise Metoprolol. Rohwasser aus durch Abwasser beeinflusstem Oberflächenwasser ist vor solchen Stoffen unterhalb gesundheitlich begründbarer Werte nur insoweit durch die Vorgaben der WRRL geschützt, wie sich solche Werte als ökologische UQN begründen lassen. Gemäss Artikel 7 der WRRL kann jeder Mitgliedsstaat eigene flussgebietsspezifische Höchstwerte so festlegen, dass der Aufwand zur Aufbereitung von Trinkwasser "möglichst verringert" wird. In diesem Kontext ist der allgemeine Vorsorgewert $VW_a = 0,1~\mu g/l$ des Umweltbundesamtes von Bedeutung. Seine Einhaltung bereits im Rohwasser, einschließlich vorübergehend akzeptabler Überschreitungen, stellt sicher, dass die Trinkwasserversorger auch hinsichtlich Humanarzneimittel den Umfang der Trinkwasseraufbereitung weiterhin gering halten oder ganz auf Aufbereitungsmaßnahmen zur Entfernung von Humanarzneimitteln verzichten können

(http://www.umweltdaten.de/wasser/themen/trinkwasserkommission/massnahmeempfehlung_hamr.pdf,

Umweltbundesamt, 2011).

3.7.3. Abgleich mit dem LANUV und in dieser Arbeit verwendete Werte

In Zusammenarbeit mit dem LANUV und unter Miteinbezug von verschiedenen Qualitätskriterien, welche vom UBA, der LAWA oder der Working-Group E der EU-Kommission empfohlen werden, wurden für dieses Projekt die hier zu verwendenden Qualitätskriterien vom LANUV festgelegt. Neben den wirkungsbasierten ökotoxikologischen Kriterien wurde auch die Situation bezgl. trinkwasserspezifischen Zielwerten in einem Kapitel angeschaut.

Für alle in dieser Arbeit berechneten Beurteilungen wurden die in der Tabelle 10 aufgeführten Qualitätskriterien des LANUV verwendet.

Tabelle 10: Auswahl von Qualitätskriterien und Zielwerten für Mikroschadstoffe des LANUV in Anlehnung an Arbeiten der LAWA, des Umweltbundesamtes und des Oekotoxzentrums sowie der Expertenkommission Programm "Reine Ruhr" und MKULNV, 2012; Umweltbundesamt, 2003; Umweltbundesamt, 2011, http://www.oekotoxzentrum.ch/qualitaetskriterien. Für die Beurteilung mit dem Stoffflussmodell wurden die fettgedruckten Werte verwendet.

Substanz	Stoffkategorie	Ökotoxikolgisches, wirkungsbasiertes Quali- tätskriterien [µg/L]	Ökol./ökotoxikol. Präventivwert [µg/L]	trinkwasserspezifi- scher Zielwert [µg/L]
Benzotriazol	Industriechemikalie	30	10	4.5 (GOW _{QSAR})*
Carbamazepin	Arzneimittel	0.5		0.1 (VW _a)**
Clarithromycin	Arzneimittel	0.06		(0.1 (VW _a))***
Diclofenac	Arzneimittel	0.1 (auch als EU-Kommissionsvorschlag 2012)		0.1 (VW _a)
Metoprolol	Arzneimittel	7.3		0.1 (VW _a)
Sotalol	Arzneimittel	unzureichende Daten	0.1	0.1 (VW _a)
Sulfamethoxazol	Arzneimittel	0.15		0.1 (VW _a)

^{*}GOW_{QSAR}: Gesundheitlicher Orientierungswert, Abkürzungen gemäss Bewertungskonzept "Reine Ruhr" (MKULNV, 2012)

 $^{^{\}star\star}\text{VW}_a$: Vorsorgewert, Abkürzungen gemäss Bewertungskonzept "Reine Ruhr" (MKULNV, 2012)

^{***}Wenn der vorsorgliche Wert höher ist als der ökotoxikologisch basierte, wird für die trinkwasserspezifische Beurteilung der tiefere der beiden Werte verwendet.

4. STOFFFLUSSMODELL

4.1 Grundsätzlicher Aufbau und Programmierung

Das Stoffflussmodell ist in R programmiert. R ist eine freie Programmiersprache für statistisches Rechnen und statistische Grafiken. Sie ist in Anlehnung an die Programmiersprache S entstanden und weitgehend mit dieser kompatibel. Der Funktionsumfang von R kann durch eine Vielzahl von Paketen erweitert und an spezifische statistische Problemstellungen angepasst werden. Viele Pakete können dabei direkt aus einer über die R-Console abrufbaren Liste ausgewählt und automatisch installiert werden. Zentrales Archiv für diese Pakete ist das Comprehensive R Archive Network (CRAN).

Das in dieser Arbeit verwendete Stoffflussmodell basiert auf dem von Christoph Ort im Rahmen des Projektes "Strategie Micropoll" an der Eawag entwickelten Modells(Ort et al., 2009). Das Stoffflussmodell berücksichtigt keine Umweltprozesse und ist daher nur auf Substanzen anwendbar, welche in der Umwelt näherungsweise persistent sind. Der R-Code des Modells beinhaltet keine GIS basierten Elemente, er beruht auf der Verknüpfung von Kläranlagen, welche in einem Inputfile, der sogenannten "Austauschtabelle" eingelesen werden.

Die Berechnung des Stoffflusses basiert auf **Frachtenberechnungen**. In erster Linie spielen die Wasserbilanzen, d.h. die hydraulischen Belastungen der Kläranlagen sowie die Abflussdaten der Fliessgewässer keine Rolle. Die Frachten werden entlang der definierten Fliessstrecke addiert. Die Konzentrationen werden dann in einem zweiten Schritt berechnet, indem die an einem bestimmten Punkt berechneten Frachten durch den Abfluss, beispielsweise den mittleren Niedrigwasserabfluss (MNQ) dividiert werden.

Die Stofffracht pro Kläranlage (F_{Stoff}) und die Konzentration im Vorfluter (C_{Stoff}), werden wie folgt berechnet (Formeln 1 und 2):

$$F_{\text{Stoff}} \left[\frac{\mathbf{g}}{\mathbf{Tag}} \right] = SE_{\text{Stoff}} \left[\frac{\mathbf{g}}{\text{Einwohner} \cdot \mathbf{Tag}} \right] \cdot E[\text{Einwohner}]$$

$$C_{\text{Stoff}} \left[\frac{\mu \mathbf{g}}{\mathbf{Liter}} \right] = \frac{F_{\text{Stoff}} \left[\frac{\mathbf{g}}{\mathbf{Tag}} \right]}{MNQ \left[\frac{\mathbf{Liter}}{\mathbf{Tag}} \right]} \cdot \mathbf{10}^{6}$$

$$(2)$$

Wobei SE_{Stoff} die Stoffmenge pro Einwohner ist, welche die Kläranlage mit dem gereinigten Abwasser verlässt und E die Einwohner pro Kläranlage.

Für die Berechnung müssen die folgenden Informationen verfügbar sein (Ort et al., 2007):

- Verbrauchsmengen der zu untersuchenden Substanz.
- Standort, Einleitstelle ins Gewässer und Anzahl angeschlossene Einwohner für jede berücksichtigte Kläranlage.
- Anteil der Substanz, die nach der Anwendung unverändert in die Kanalisation gelangt.
- Substanzspezifische Eliminationsleistung der Kläranlagen (konventionelle Stufen).
- Topologisches Netzwerk aller Oberflächengewässer.
- Informationen über die Abflüsse direkt unterhalb der Einleitstellen (beispielsweise mittlerer Niedrigwasserabfluss MNQ oder mittlerer Abfluss über das ganze Jahr, MQ).

Um die oben aufgezählten Daten einzulesen benötigt das in R programmierte Stoffflussmodell folgende zwei Dateien:

- Austauschtabelle: Diese Tabelle enthält alle Informationen über die Kläranlagen, die angeschlossenen Einwohner und deren Verknüpfung über das Gewässernetz.
- Input Stoffdaten: Diese Tabelle enthält alle stoffspezifischen Informationen, wie Verkaufsmengen, Metabolisierungsraten, Abbauraten.

Diese 2 Dateien müssen als Text-Files abgelegt werden. Die Erstellung der Tabellen kann aber beispielsweise in Excel erfolgen.

4.2 Austauschtabelle

Die Austauschtabelle enthält alle benötigten Kläranlagen-Informationen und deren Verknüpfung. Im Folgenden sind die wichtigsten Parameter kurz beschrieben.

Kläranlagen

Es wurden insgesamt 641 Kläranlagen in Nordrhein-Westfalen für die Berechnungen berücksichtigt. Zur eindeutigen Identifikation wurde jeder Kläranlage eine ID-Nummer zugeteilt.

Angeschlossene Einwohner

Für den Stofffluss der Mikroschadstoffe werden die tatsächlich an die Kläranlagen angeschlossenen Einwohner als Berechnungsgrundlage genommen. Für die im Rahmen dieses Projektes berücksichtigten Mikroschadstoffe, u.a. Arzneimittel und Haushaltschemikalien, kann angenommen werden, dass die in die Kläranlage transportierte Stofffracht direkt mit den

angeschlossenen Einwohnern korreliert. Die Dimensionierung der Kläranlagen (Ausbaugrösse), Fremdwasser und Regenwasser, und etwaige industrielle Indirekteinleiter können für solche Stoffe hinsichtlich der eingetragenen Frachten in der Regel vernachlässigt werden.

Gewässernetz

Die Verknüpfung der Kläranlagen über das Gewässernetz, kann mit Hilfe von GIS (Geographische Informationssysteme) und den entsprechenden Abfragen extrahiert werden. Die GIS Abfragen wurden vom LANUV durchgeführt und zur Verfügung gestellt. In Abbildung 8 ist die Art der Verknüpfung anhand eines einfachen Beispiels dargestellt.

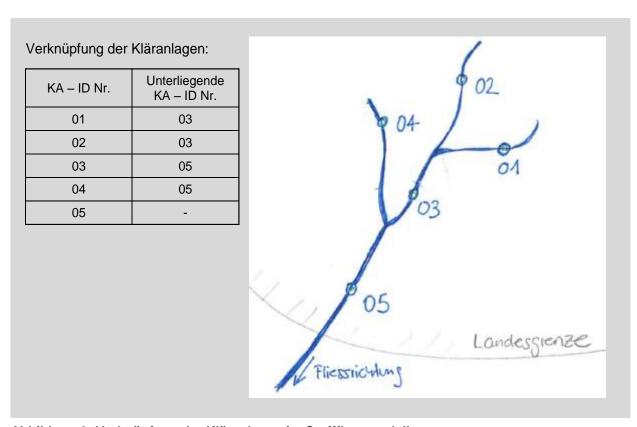


Abbildung 8: Verknüpfung der Kläranlagen im Stoffflussmodell.

Über die in Abbildung 8 illustrierten Verknüpfungen werden die Frachten entlang der Fliesstrecke kumuliert. Es wird dabei angenommen, dass während des Stofftransports kein Abbau und keine Sorption an Feststoffe oder ins Sediment stattfinden.

Abflussdaten

Um aus den Frachten die Konzentrationen in Gewässern unterhalb der Einleitstellen der Kläranlagen zu berechnen wurde der mittlere Niedrigwasserabfluss (MNQ) als Abflussgrösse

genommen. Für die Vergleiche mit Messdaten wurden die realen Abflussdaten zum Zeitpunkt der Messungen berücksichtigt.

4.3 Vorbelastungen der zufliessenden Gewässer

4.3.1. Vorbelastung des Rheins

Die Vorbelastung des Rheins an der Landesgrenze Rheinland-Pfalz zu NRW spielt für die berechneten Stofffrachten und Konzentrationen im Rhein eine entscheidende Rolle. Vor Eintritt des Rheins ins Gebiet von Nordrhein-Westfalen wird das kommunale Abwasser von rund 32 Mio. Einwohnern in den Rhein geleitet. An der GUES-Messstelle an der Landesgrenze WkSt. Süd (Bad Honnef) wurde über die letzten Jahre die Belastung für verschiedene Mikroschadstoffe systematisch erfasst. Die gemessenen Konzentrationen wurden über die Tagesmittelwerte der an der Messstation erfassten Abflussdaten auf Stofffrachten umgerechnet und mit den aus der Stoffflussberechnung (korreliert zu den oberliegenden Einwohnern) verglichen (siehe Abbildung 9).

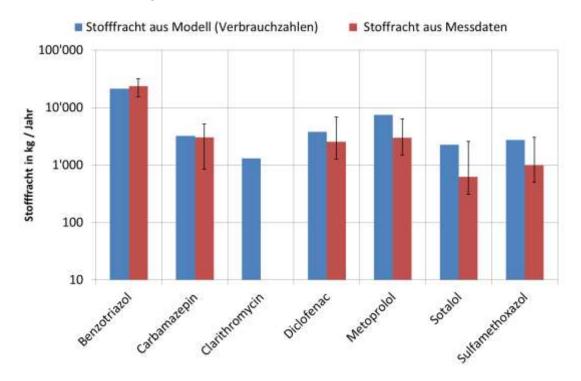


Abbildung 9: Vergleich der aus der Stoffflussberechnung resultierenden Stofffrachten der berechneten Messwerte an der GUES-Messstelle WkSt. Süd Bad Honnef. Für Clarithromycin lagen keine Messwerte vor aus denen Frachten ermittelt werden konnten. Für Benzotriazol wurden die Messungen aus Kläranlagen und nicht die Verbrauchszahlen verwendet.

Die in Abbildung 9 dargestellten Stofffrachten aus Messwerten stellen die Mittelwerte der Stofffrachten dar, welche aus den in den Jahren 2008-2011 erhobenen Messwerten berechnet wurden. Die Unsicherheitsbalken zeigen das 95% Vertrauensintervall der berechneten Stoffflüsse. Diese Angaben spiegeln die vorhandenen Schwankungen der Stoffflüsse wieder.

Alle modellierten Stoffflüsse mit Ausnahme von Metoprolol liegen innerhalb dieser Varianz. Die anhand der Messdaten abgeschätzte Fracht von Metoprolol liegt tiefer, als die aus den Verbrauchszahlen ermittelte. Der Grund dafür liegt höchstwahrscheinlich an der überschätzten Belastung durch die Oberlieger, wenn dem Stofffeintrag der Oberlieger die Verbrauchszahlen von NRW zu Grunde gelegt werden. Metoprolol (Betablocker) wird beispielsweise in der Schweiz viel weniger eingesetzt als in Deutschland. Häufiger wird dafür der Betablocker Atenolol verwendet. Die Verbrauchszahlen der anderen ausserhalb von Deutschland liegenden Oberlieger (Frankreich, Österreich und Lichtenstein) liegen nicht vor. Die bedeutendsten Oberlieger für den Rhein sind aber Baden-Württemberg und Rheinland-Pfalz, die beide ein ähnliches Verbrauchsmuster aufweisen müssten wie Nordrhein-Westfalen.

Für die Berechnung der Vorbelastung wurden in einem ersten Ansatz die aus den Verbrauchszahlen bzw. Messungen in Kläranlagen ermittelten Einträge verwendet. Diese Annahme wird später im Resultateteil diskutiert

4.3.2. Vorbelastung der übrigen Gewässer

Die Vorbelastung aller anderen Fliessgewässer (ohne den Rhein) entspricht zusammen rund 2.700.000 angeschlossenen Einwohnern. Für einige dieser Gewässer sind an der Stelle des Landeseintritts keine GUES-Messstellen vorhanden, bzw. keine oder nur wenige Daten über die hier betrachteten polaren Mikroschadstoffe erhoben worden. Für diese Fliessgewässer wurden die oberliegenden angeschlossenen Einwohner als Referenz für deren Vorbelastung verwendet, also die berechneten Stofffrachten zugrunde gelegt.

5. BERECHNUNG DES IST-ZUSTANDES

5.1 Georeferenzierte Darstellung der modellierten Konzentrationen einer Auswahl an Mikroschadstoffen

Die Stofffrachten wurden für 641 Einleitstellen unterhalb von Kläranlagen berechnet. Aus den berechneten Stofffrachten wurden über den mittleren Niedrigwasserabfluss (MNQ) die Konzentrationen bei Trockenwetter berechnet. Bei den so ermittelten Konzentrationen handelt es sich um Situationen, welche für die Gewässer eine Extrembelastung darstellen, aber welche durchaus einige Tage im Jahr auftreten. Generell wird in der Tendenz derzeit von einer Zunahme der Belastung durch Pharmazeutika in Gewässern ausgegangen (siehe Zusammenstellung von Monitoring-daten zu Umweltkonzentrationen von Arzneimitteln; http://www.uba.de/uba-info-medien/4188.html). Im Folgenden werden die Konzentrationen von Carbamazepin, Diclofenac und Metoprolol an den Einleitstellen georeferenziert dargestellt. Die vollständigen Resultate befinden sich in Anhang 5.

5.1.1. Carbamazepin

In Abbildung 10 sind die modellierten Konzentrationen bei MNQ von Carbamazepin in den Gewässern direkt unterhalb der 641 Einleitstellen in fünf Konzentrationsbereichen dargestellt.

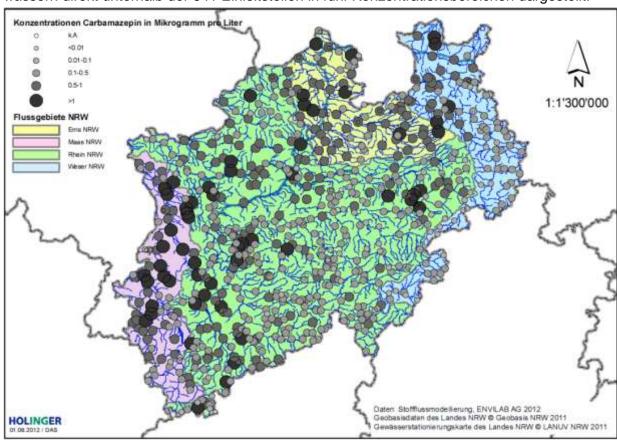


Abbildung 10: Für MNQ modellierte Carbamazepin-Konzentrationen in µg/L.

Die meisten Vorfluter weisen im unmittelbaren Einflussbereich der kommunalen Kläranlagen bei MNQ Konzentrationen von Carbamazepin zwischen 0.1 und 0.5 µg/L auf. Dies korrespondiert mit einem kumulativen Abwasseranteil bei MNQ zwischen 20 und 60%. Für die Vorfluter unterhalb der Einleitstellen, für die keine MNQ-Werte vorhanden waren, konnten dementsprechend auch keine Konzentrationen berechnet werden. Diese Einleitstellen sind in den Abbildungen mit k.A. gekennzeichnet. Es sind insgesamt 22 Vorfluter, für die keine Abflussdaten vorhanden waren.

5.1.2. Diclofenac

In Abbildung 11 sind die modellierten Konzentrationen bei MNQ von Diclofenac dargestellt. Diese bewegen sich in einem sehr ähnlichen Bereich wie die von Carbamazepin, aufgrund der rund 15% höheren Emission aus Kläranlagen sind die Konzentrationsbereiche geringfügig höher (Abbildung 11).

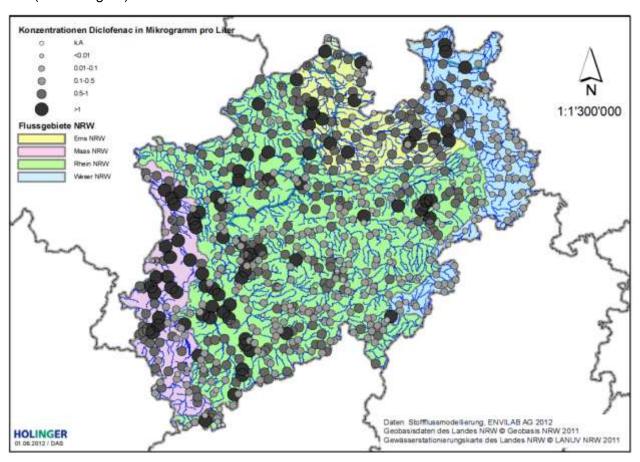


Abbildung 11: Für MNQ modellierte Diclofenac Konzentrationen in µg/L.

Für die hier durchgeführten Berechnungen wurde die Photolyse von Diclofenac in einem ersten Anlauf nicht berücksichtigt, d.h. es wurde angenommen, dass Diclofenac während der Fliess-

strecken in Nordrhein-Westfalen nicht signifikant abgebaut wird. Der Vergleich mit Messdaten zeigt, dass diese vereinfachende Annahme zutrifft (vergl. Abschnitt 5.2.6, Vergleich der Stoffflüsse für ausgewählte Mikroschadstoffe).

5.1.3. Metoprolol

Die modellierten Konzentrationen von Metoprolol bei MNQ in den Vorflutern direkt unterhalb der Einleitstellen sind in Abbildung 12 wiedergegeben. Metoprolol ist ein selektiver β1-Adrenorezeptoren-blocker (Betablocker) und wird in NRW in relativ hohen Mengen, mit mehr als 33 Tonnen/Jahr, eingesetzt.

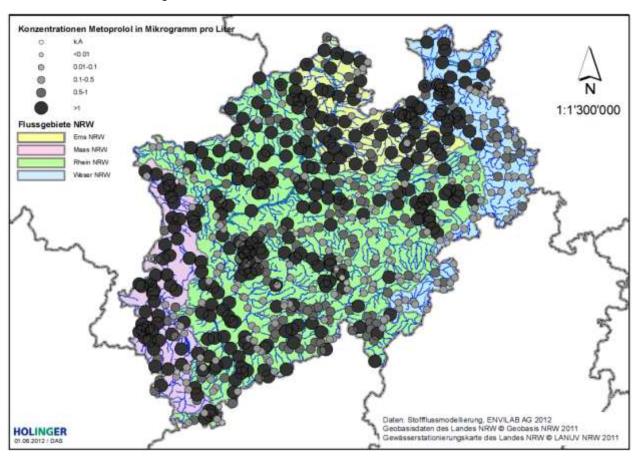


Abbildung 12: Für MNQ modellierte Metoprolol Konzentrationen in µg/L.

Von der verbrauchten Menge gelangen nach der Metabolisierung im Körper und dem Abbau in der biologischen Stufe ca. 15%, also um die 5 t/Jahr in die Gewässer. Aus diesen Eigenschaften resultieren die für Arzneimittelrückstände hohen Konzentrationen in den Gewässern bei MNQ. Unterhalb vieler Einleitstellen betragen die ermittelten Konzentrationen > 1 μ g/L. Diese Resultate entsprechen den gemessenen Konzentrationsbereichen (LANUV-Daten, siehe Anhang 3). Im nächsten Abschnitt werden die modellierten Frachten mit aus den LANUV-Messdaten ermittelten Frachten verglichen.

5.2 Überprüfung des Stoffflussmodells: Vergleich der berechneten Stoffflüsse mit Messdaten,

5.2.1. Verifizierung, Validierung und Überprüfung des Modells

Das in diesem Projekt verwendete Stoffflussmodell wurde im Rahmen des Projekts "Strategie Micropoll" für die Schweiz entwickelt und verifiziert¹ und für verschiedene Mikroverunreinigungen in Fliessgewässern validiert² (Ort, et al., 2007; Ort, et al., 2009). Das Modell ist prinzipiell auf Flusseinzugsgebiete mit ähnlichen Fliesszeiten übertragbar. Für quasi-persistente Substanzen, mit geografisch relativ homogener und zeitlich konstanter Anwendung, wird eine gute Übereinstimmung zwischen modellierten Stoffflüssen und gemessen Daten erwartet. Diese Voraussetzungen sind in Nordrhein-Westfalen für die ausgewählten Substanzen grundsätzlich gegeben.

Trotz klarer Definitionen werden die Begrifflichkeiten Verifizierung¹ und Validierung² sowohl in der Wissenschaft als auch im allgemeinen Sprachgebrauch unterschiedlich gehandhabt. Dies macht eine klare Abgrenzung der zwei Begriffe nicht einfach möglich und darum wird im Rahmen dieser Arbeit einzig von Überprüfung gesprochen. In diesem Sinne wird überprüft ob das Modell die Messdaten gut wiedergibt und in diesem Zusammenhang als zuverlässiges Vorhersageinstrument, respektive zur Evaluation unterschiedlicher Zukunftsszenarien verwendet werden kann.

5.2.2. GUES-Messstellen

Insgesamt waren 51 GUES-Messstellen für die Überprüfung verfügbar. Die Auswahl der Messstellen und die Messdaten wurden durch das LANUV zur Verfügung gestellt.

In Abbildung 13 sind alle 51 für den Stoffflussvergleich einbezogenen GUES-Messstellen mit Angabe des am Bezugspegel der Messstellen ermittelten, langjährigen mittleren Niedrigwasserabfluss (MNQ) abgebildet.

_

¹ Verifizierung: "Bestätigung durch einen objektiven Nachweis, dass Anforderungen erfüllt werden." (DIN EN ISO 9000:2005, Abschnitt 3.8.4). Generell Beantwortung der Frage: "Ist das System (=Modell) richtig gebaut?"

² Validierung: "Bestätigung durch objektiven Nachweis, dass die Anforderungen für eine bestimmte Anwendung oder einen bestimmten Gebrauch erfüllt sind." (ISO 9000:2005, Abschnitt 3.8.5) Generell Beantwortung der Frage: "Ist es das richtige System (=Modell), um die Anforderungen in der Praxis zu erfüllen?"

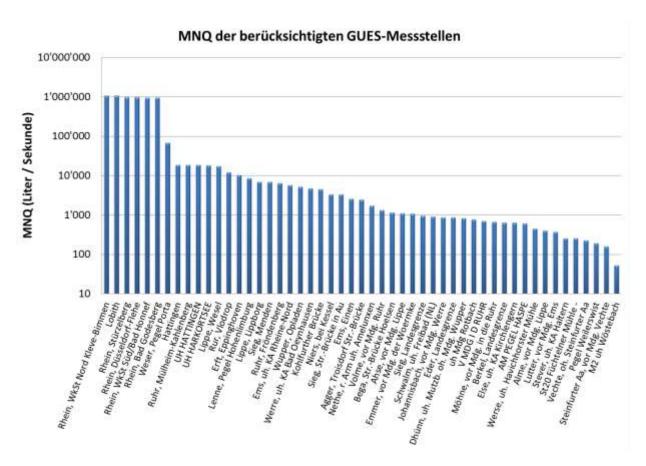


Abbildung 13: Mittlere Niedrigwasserabflüsse (MNQ) der für die Modellüberprüfung berücksichtigten GUES-Messstellen. Die MNQ zwischen den verschiedenen Messstellen variieren zwischen ca. 50 Litern pro Sekunde und über 1'000'000 Liter pro Sekunde.

Mit den berücksichtigten Messstellen werden kleine bis grosse Gewässer abgebildet. Die MNQ zwischen den verschiedenen Messstellen variieren zwischen wenigen Litern pro Sekunde und über 1'000'000 Liter pro Sekunde. Somit steht eine sehr breite Datenbasis für die Modellverifizierung zur Verfügung.

5.2.3. Carbamazepin

In Abbildung 14 sind die an den ausgewählten GUES-Messstellen gemessenen, gemittelten Konzentrationen von Carbamazepin angegeben. Um die Vergleichbarkeit mit den Modelldaten und zwischen den Messstellen zu gewährleisten wurden die Konzentrationen auf den MNQ der jeweiligen Messstellen normiert. Die Konzentrationen bewegen sich, je nach Messstelle zwischen 0.07 und $3.1~\mu g/L$ (siehe Anhang 3:

Messdaten im Gewässer – Stofffrachten und Konzentrationen).

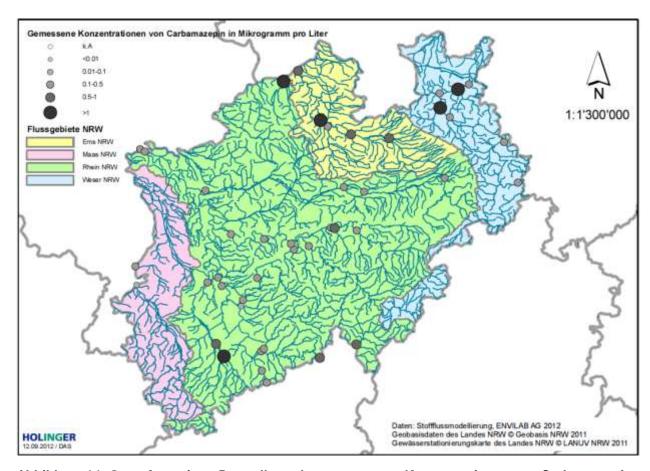


Abbildung 14: Georeferenzierte Darstellung der gemessenen Konzentrationen von Carbamazepin (umgerechnet auf MNQ). Die gemessenen Konzentrationen bewegen sich zwischen 0.07 und 3.1 μ g/L.

5.2.4. Diclofenac

In Abbildung 15 sind die an den ausgewählten GUES-Messstellen gemessenen gemittelten Konzentrationen von Diclofenac angegeben. Die Konzentrationen bewegen sich, je nach Messstelle zwischen 0.08 und 1.27 μ g/L (siehe Anhang 3: Messdaten im Gewässer – Stofffrachten und Konzentrationen).

Abbildung 15: Georeferenzierte Darstellung der gemessenen Konzentrationen von Diclofenac (umgerechnet auf MNQ). Die gemessenen Konzentrationen bewegen sich zwischen 0.08 und $1.27~\mu g/L$.

5.2.5. Umrechnung der gemessenen Konzentrationen auf Stoffflüsse

Die an den GUES-Messstellen gemessenen Konzentrationen wurden über Tagesmittelwerte der Abflüsse auf entsprechende Stofffrachten umgerechnet. Insgesamt wurden rund 10'500 Messwerte über die zusammengestellten Abflussdaten in Frachten umgerechnet. Somit standen umfangreiche Messdaten für die Modellüberprüfung zur Verfügung.

5.2.6. Vergleich der Stoffflüsse für ausgewählte Mikroschadstoffe

Zur Überprüfung der Modellberechnungen wurden die aus dem Modell resultierenden Stoffflüsse mit den aus den Messdaten abgeschätzten Stoffflüssen verglichen. Die Vergleiche sind für die Mikroschadstoffe Benzotriazol, Carbamazepin, Diclofenac und Sotalol in der Abbildung 16 wiedergegeben.

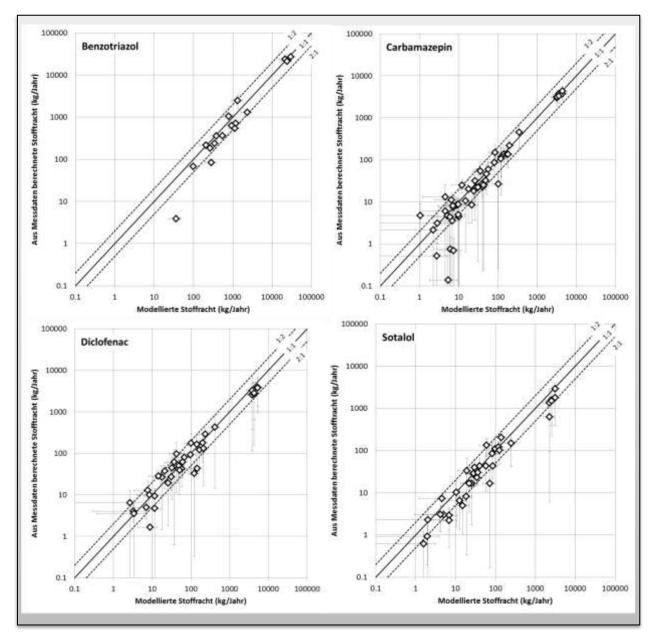


Abbildung 16: Vergleiche der Stoffflüsse der vier Mikroschadstoffe Benzotriazol, Carbamazepin, Diclofenac und Sotalol an den GUES-Messstellen.

Die Vergleiche zwischen den modellierten und den aus Messwerten abgeschätzten Stoffflüssen zeigen für Benzotriazol, Carbamazepin, Diclofenac und Sotalol eine sehr gute Übereinstimmung. Generell sind die Streuung und auch die Abweichungen bei kleinen Fliessgewässern (in den Abbildungen gegen unten links) grösser, als bei den grossen Gewässern. Besonders ist dies bei Carbamazepin erkennbar. Aus den dargestellten Daten lässt sich ableiten, dass das verwendete Stoffflussmodell für diese vier Stoffe sehr gut übereinstimmt und eine gute Vorhersagegenauigkeit aufweist. Die Oberliegerbelastung scheint mit den getroffenen Annahmen,

dass in den oberliegenden Ländern im Durchschnitt die gleichen Mengen pro Person verbraucht werden für diese vier Stoffe gut zu stimmen.

In Abbildung 17 sind die Vergleiche der Stoffflüsse der drei Mikroschadstoffe Clarithromycin, Metoprolol und Sulfamethoxazol an den GUES-Messstellen wiedergegeben.

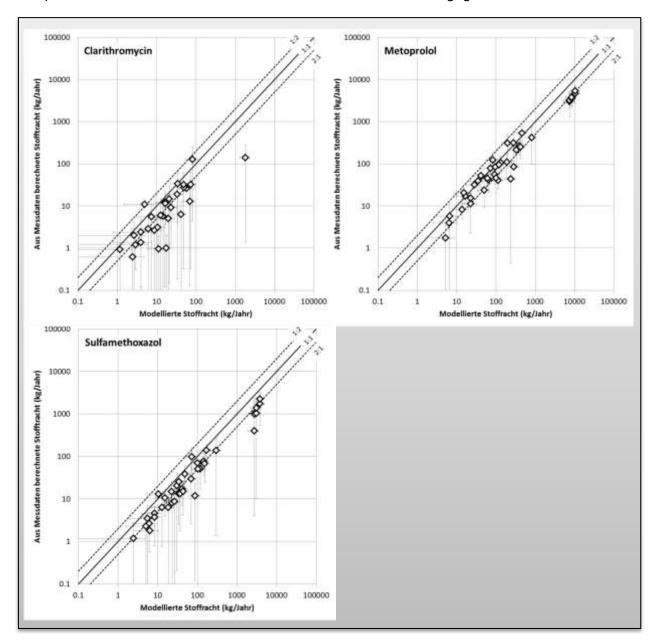


Abbildung 17: Vergleiche der Stoffflüsse der drei Mikroschadstoffe Clarithromycin, Metoprolol und Sulfamethoxazol an den GUES-Messstellen.

Bei Clarithromycin, Metoprolol und Sulfamethoxazol sind die modellierten Stofffrachten tendenziell höher als die aus den Messwerten abgeschätzten Frachten. Dies kann, abhängig vom betrachteten Stoff, verschiedene Ursachen haben.

Metoprolol: Bei Metoprolol ist auffällig, dass insbesondere die modellierten Daten im Rhein nicht gut mit den aus den Messwerten abgeschätzten Daten übereinstimmen. In den kleineren und mittleren Fliessgewässern in NRW, welche keine oder nur wenige Oberlieger aus anderen Bundesländern oder Nationen haben, ist die Übereinstimmung ziemlich gut und eine gute Vorhersagegenauigkeit wird erreicht. Die Ursache ist höchstwahrscheinlich, dass die wichtigen oberliegenden Staaten andere Verbrauchsmuster von Arzneimitteln aufweisen als NRW. Für die Schweiz ist beispielsweise bekannt, dass Metoprolol nicht so häufig eingesetzt wird, es werden häufiger andere Betablocker wie z.B. das Atenolol verschrieben.

Clarithromycin und Sulfamethoxazol: Bei diesen beiden Arzneimitteln (Antibiotika) ist der modellierte Stofffluss an fast allen GUES-Messstellen höher als der aus den Messdaten berechnete. Die Ursache für die Diskrepanz ist für diese Stoffe nicht ganz klar. Die aktuellen Messungen des LANUV vom Frühling 2012 in den Kläranlagenabläufen stimmen ziemlich gut mit den berechneten Stoffflüssen überein (vergl. Abschnitt 3.4, Vergleich der berechneten Inputdaten mit Messungen an Kläranlagen), daher ist eine deutliche Überschätzung des aktuellen Eintrags durch die Modellannahmen eher unwahrscheinlich. Bei Clarithromycin ist möglicherweise der Konsum signifikant gestiegen und die Messdaten in den Gewässern, welches Mittelwerte aus den Jahren 2008-2011 sind, repräsentieren nicht mehr die aktuelle Situation. Ein Hinweis darauf ist, dass in der Messkampagne des LANUV aus dem Jahres 2010 bei Clarithromycin im Mittel nur um die 40 ng/L in Kläranlagenausläufen gefunden wurde, in der Kampagne von 2012 waren es rund 110 ng/L, was den Modellrechnungen entspricht. Mit einem Input aus den Kläranlagen von 40 ng/L würden die Messdaten und die Modelldaten zusammenpassen. Der Konsum von Sulfamethoxazol, wie auch die Mittelwerte der Messdaten in Kläranlagenausläufen, scheinen sich nicht geändert zu haben.

5.3 Beurteilung der Gewässerbelastung

5.3.1. Einzelstoffbeurteilung anhand von ökotoxikologisch basierten Werten

Generell erfolgt eine Risikobewertung durch den Vergleich einer Umweltkonzentration mit den wirkungsbasierten Qualitätskriterien oder Qualitätszielen. Dabei wird mit dem Vergleich der an einem Ort auftretenden (gemessenen oder berechneten) Umweltkonzentration (EC:= Environmental Concentration) und dem entsprechenden wirkungsbasierten Qualitätskriterium ein Risikoquotient bestimmt. Der Risikoquotient (RQ) wird folgendermassen berechnet:

RQ = EC / Qualitätskriterium oder Qualitätsziel

Basierend auf dem berechneten Risikoquotient können die Vorfluter in verschiedene Zustandsklassen eingeteilt werden. Das System mit sieben Zustandsklassen und den verwendeten Klassengrenzen ist an die Wasserrahmenrichtlinien (WRRL) und den Monitoringleitfaden von Nordrhein-Westfalen angelehnt, wobei es mit zwei zusätzlichen Einteilungen (zehnfache Überschreitung des Qualitätskriteriums, resp. zehnfach unter dem Qualitätskriterium) ergänzt wurde. Die sieben Zustandsklassen und die hier verwendeten Klassengrenzen sind in der Tabelle 11 wiedergegeben.

Tabelle 11: Wirkungsbasierte Beurteilung der chemischen Wasserqualität für Mikroschadstoffe aus kommunalem Abwasser. Einteilung nach verschiedenen Farben für die graphische Darstellung in Anlehnung an den Monitoringleitfaden NRW (LANUV).

Farbeinteilung	Bedingung/Beschreibung		Einhaltung Qualitäts- kriterium	
	Maximal 10% des Qualitätskriteriums	RQ < 0.1		
	maximal halbes Qualitätskriterium	0.1 ≤ RQ < 0.5	Qualitätskriterium eingehalten	
	maximal einfaches Qualitätskriterium	0.5 ≤ RQ < 1		
	maximal doppeltes Qualitätskriterium	1 ≤ RQ < 2	Qualitätskriterium überschritten (nicht eingehalten)	
	maximal vierfaches Qualitätskriterium	2 ≤ RQ < 4		
	mehr als vierfaches Qualitätskriterium	4 ≤ RQ < 10		
	Mehr als zehnfaches Qualitätskriterium	RQ ≥ 10		

Die Zielvorgabe ist für die Klassen Hellblau, Blau und Grün erreicht und für die Klassen Gelb, Orange, Rot und Dunkelrot nicht.

Die hier gewählte Beurteilung der Wasserqualität aufgrund der Zustandsklassen basiert auf der Beurteilung von Einzelstoffen, d.h. die Zustandsklassen der Gewässer werden spezifisch für die betrachteten Stoffe angegeben. Eine Beurteilung des Gewässerzustandes bezüglich der gesamten Belastungssituation durch Mikroschadstoffe ist derzeit noch nicht möglich. Eine summarische Betrachtung der Überschreitungen für 6 Indikatorstoffe ist im vorliegenden Bericht exemplarisch vorgenommen worden (s.u.).

5.3.2. Vergleich mit ökotoxikologischen Qualitätskriterien für Carbamazepin, Diclofenac und Metoprolol

Im Folgenden werden die für MNQ ermittelten Risikoquotienten von Carbamazepin, Diclofenac und Metoprolol georeferenziert dargestellt. Es wurden die wirkungsbasierten Qualitätskriterien verwendet, welche in Absprache mit dem LANUV bestimmt wurden und auf den Vorschlägen des UBA und des Oekotoxzentrums basieren (vergl. Abschnitt 3.7).

In Abbildung 18 sind die modellierten Risikoquotienten von Carbamazepin in den Vorflutern direkt unterhalb der Einleitstellen der Kläranlagen dargestellt. Als Qualitätskriterium für Carbamazepin wurde 0.5 µg/L verwendet.

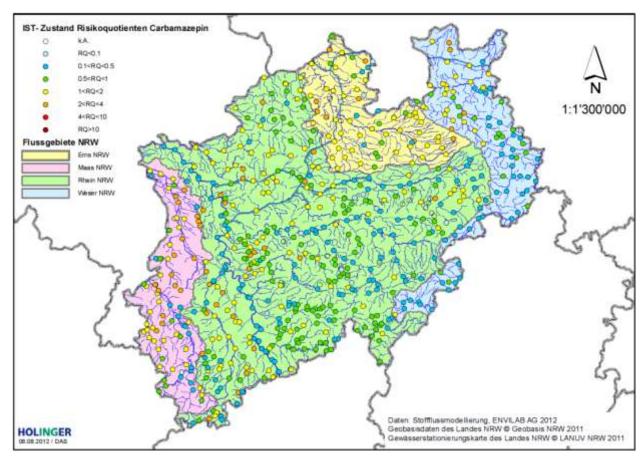


Abbildung 18: Risikoquotienten von Carbamazepin in den Gewässern direkt unterhalb der Einleitstellen der Kläranlagen. Als Qualitätskriterium für Carbamazepin wurde 0.5 µg/L verwendet.

Die Konzentrationen von Carbamazepin überschreiten an keinem der modellierten Vorfluter unterhalb der Einleitstellen das vierfache Qualitätskriterium. Insgesamt wird das Qualitätskriterium von 0.5 μg/L in 60% aller 641 Vorfluter eingehalten, wobei ca. 4% der Vorfluter aufgrund fehlender MNQ Angaben nicht beurteilt wurden. In etwa 35% aller beurteilten Vorfluter wurde somit das Qualitätskriterium überschritten, jedoch in weniger als 10% um das doppelte und nie um mehr als das Vierfache. Die Situation im IST-Zustand ist somit für Carbamazepin im Vergleich zu Diclofenac als weniger kritisch einzustufen. Es besteht aber durchaus Handlungsbedarf, wenn die Qualitätskriterien bei MNQ überall eingehalten werden sollen oder vorsorgliche Werte (0.1 μg/L für Arzneimittel) zur Anwendung kommen.

Die georeferenzierte Darstellung der modellierten Risikoquotienten von Diclofenac in den Vorflutern direkt unterhalb der 641 Einleitstellen der Kläranlagen ist in Abbildung 19 wiedergeben.

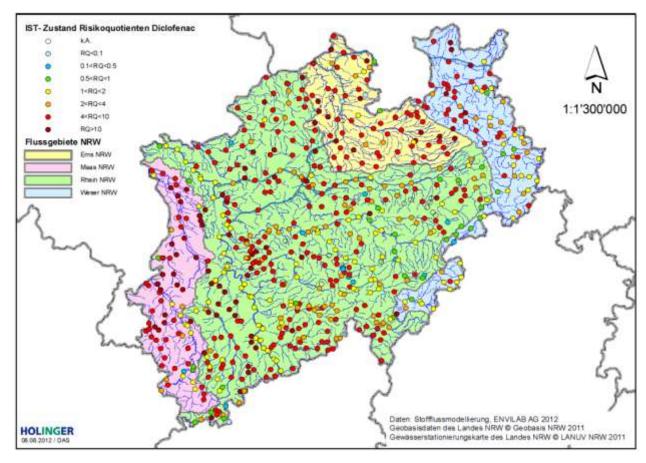


Abbildung 19: Risikoquotienten von Diclofenac in den Gewässern direkt unterhalb der Einleitstellen der Kläranlagen. Als Qualitätskriterium für Diclofenac wurde 0.1 µg/L verwendet.

Die modellierten Konzentrationen von Diclofenac überschreiten in vielen der 641 Gewässerabschnitten unterhalb der Einleitstellen das Qualitätskriterium von 0.1 μg/L. Dies ist für über 90% der beurteilten Vorfluter der Fall. Unterhalb 82 Einleitstellen ist das Qualitätskriterium für Diclofenac bei MNQ sogar um das Zahnfache und in rund 50% aller Vorfluter um mindestens das Vierfache überschritten. Die Modellierung von Diclofenac zeigt somit von den in dieser Arbeit modellierten Stoffe das höchste Risiko für aquatische Organismen an. Dies ist auch aus anderen vergleichbaren Studien bekannt (Ort, et al., 2009; Gälli, et al., 2009). Es gibt aber durchaus andere vergleichbar kritische Stoffe aus kommunalem Abwasser, beispielsweise hormonaktive Stoffe, wie Ethinylestradiol, welche zwar in noch tieferen Konzentrationen in den Gewässern vorkommen, aber auch ökotoxikologisch kritischer sind und unterhalb von 1 ng/L in Organismen zu populationsrelevanten Effekten führen können (Kase, et al., 2011; Götz, et al., 2011).

Die Abbildung 20 zeigt die Risikoquotienten von Metoprolol in den Vorflutern direkt unterhalb der Einleitstellen der modellierten Kläranlagen unter Verwendung des wirkungsbasierten Qualitätskriteriums von 7.3 µg/L.

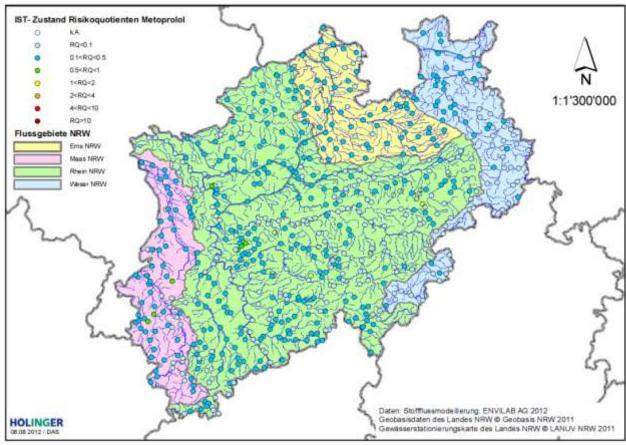


Abbildung 20: Risikoquotienten von Metoprolol in den Gewässern direkt unterhalb der Einleitstellen der Kläranlagen. Als Qualitätskriterium für Metoprolol wurde 7.3 µg/L verwendet.

Die Konzentrationen von Metoprolol bewegen sich durchweg unter dem Qualitätskriterium von 7.3 μg/L. Obwohl Metoprolol im Vergleich zu Carbamazepin und Diclofenac die höheren Konzetrationen aufweist (vergl Abschnitt 5.1, Georeferenzierte Darstellung der modellierten Konzentrationen einer Auswahl an Mikroschadstoffen), ist es bezüglich Wasserqualität der am wenigsten kritischste Stoff von diesen drei Arzneimitteln, aufgrund des relativ hohen wirkungsbasierten Qualitätskriteriums.

5.3.3. Vergleich mit ökotoxikologischen Qualitätskriterien für sechs Mikroschadstoffe

Die Einteilung der Risikoquotienten für MNQ wurde im Folgenden für die sechs Mikroschadstoffe Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol und Sulfamethoxazol durchgeführt und zusammenfassend dargestellt. In der Abbildung 21 sind (A) die relativen Verteilungen der Risikoquotienten der 641 Vorfluter daregestellt und (B) die Anzahl Überschreitungen der sechs beurteilten Mikroschadstoffe georeferenziert abgebildet.

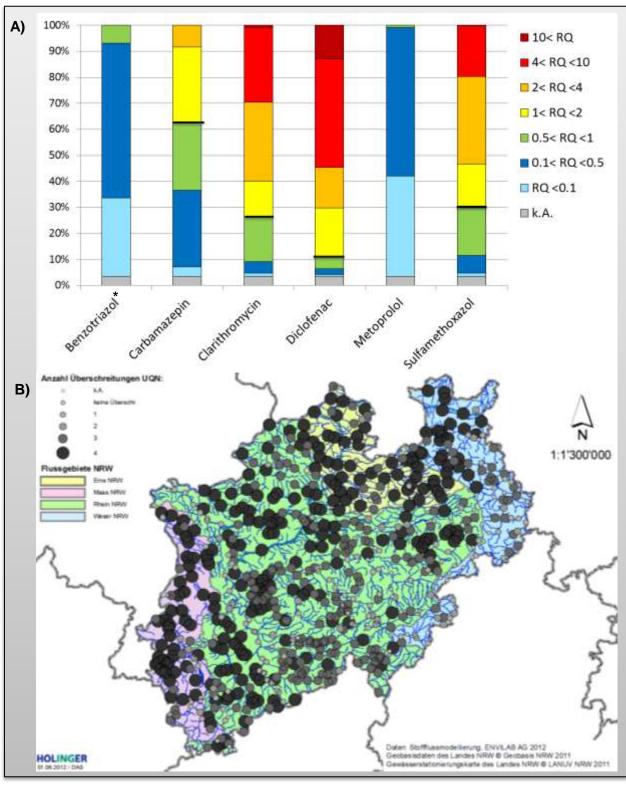


Abbildung 21: (A) Relative Verteilung der Risikoquotienten der 641 Gewässer direkt unterhalb der Einleitstellen der Kläranlagen für Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol und Sulfamethoxazol. (B) Georeferenzierte Darstellung der Anzahl Überschreitungen des Qualitätskriteriums bei der Betrachtung der sechs oben erwähnten Mikroschadstoffe. *Für Benzotriazol wurde der ökotoxikologische Präventivwert verwendet.

Von den sechs modellierten Mikroschadstoffen weisen maximal vier Stoffe (Carbamazepin, Clarithromycin, Diclofenac und Sulfamethoxazol) in den Vorflutern unterhalb der einzelnen Einleitstellen Überschreitungen auf. Benzotriazol und Metoprolol zeigen keine Überschreitungen der wirkungsbasierten ökotoxikologischen Qualitätskriterien. Insgesamt werden die Qualitätskriterien von vier Stoffen an rund 35% aller beurteilten Vorfluter, von drei Stoffen in 30%, von zwei in 5%, von einem in 15% und keine Überschreitung war in rund 10% der Vorfluter festzustellen. Etwa 5% der Vorfluter konnten nicht beurteilt werden.

Die zusammenfassende Analyse von mehreren Mikroschadstoffen, könnte gut für eine Priorisierung der einzelnen Anlagen bezüglich des Handlungsbedarfs verwendet werden oder zum Fokussieren der Monitoringaufgaben. Im Vergleich zur Beurteilung des Gewässerzustands bezüglich einer Einzelsubstanz, beispielsweise Diclofenac, ergibt sich bei der Analyse mehrerer Stoffe ein stärker abgestuftes Bild. In diesem Fall wären die 35% der Vorfluter, welche vier Überschreitungen zeigen, aus ökotoxikologischer Sicht prioritär zu behandeln.

5.3.4. Extrapolation der Konzentrationen unterhalb der Einleitstellen auf die Oberflächenwasserkörper

Die Beurteilung der Gewässer nach der europäischen Wasserrahmenrichtlinie (WRRL) verlangt die Definition verschiedener Wasserkörper und deren einzelne Beurteilung. Dabei wird bei den Oberflächenwasserkörpern zwischen natürlichen, erheblich veränderten oder künstlichen Wasserkörpern unterschieden. Zur Umsetzung der Europäischen Wasserrahmenrichtlinie (WRRL) auf Landesebene wurde die Gewässerlandschaft in NRW auf der Grundlage der oberirdischen Einzugsgebiete in 12 Teileinzugsgebiete gegliedert, die zu den vier NRW betreffenden Flussgebieten Rhein, Weser, Ems und Maas gehören (MKULNV, 2012). Insgesamt wurden in Nordrhein-Westfalen 1'897 Oberflächenwasserkörper definiert, wobei 27 davon an Schifffahrtskanälen liegen (LANUV, 2012)

Nachfolgend werden im Rahmen dieser Arbeit die bei MNQ ermittelten Konzentrationen sämtlicher 641 modellierten Einleitstellen der Kläranlagen auf die einzelnen Wasserkörper extrapoliert. Der jeweils höchste Wert ist für die Bewertung ausschlaggebend.

In Abbildung 22 sind die Risikoquotienten von Carbamazepin und Diclofenac für die einzelnen Oberflächenwasserkörper in Nordrhein-Westfalen dargestellt. Es zeigt sich, dass viele der Oberflächenwasserkörper der grösseren Fließgewässer, beispielsweise die Erft, Emscher, Niers oder Ruhr problematische Konzentrationen an Diclofenac aufweisen. Insbesondere zeigen auch die Oberflächenwasserkörper des Rheins im ganzen Bundesland eine Überschreitung des Qualitätskriteriums von Diclofenac von 0.1 µg/L. Die Belastung der Wasserkörper mit Carbamazepin ist bezüglich ökotoxikologischer Kriterien weniger kritisch.

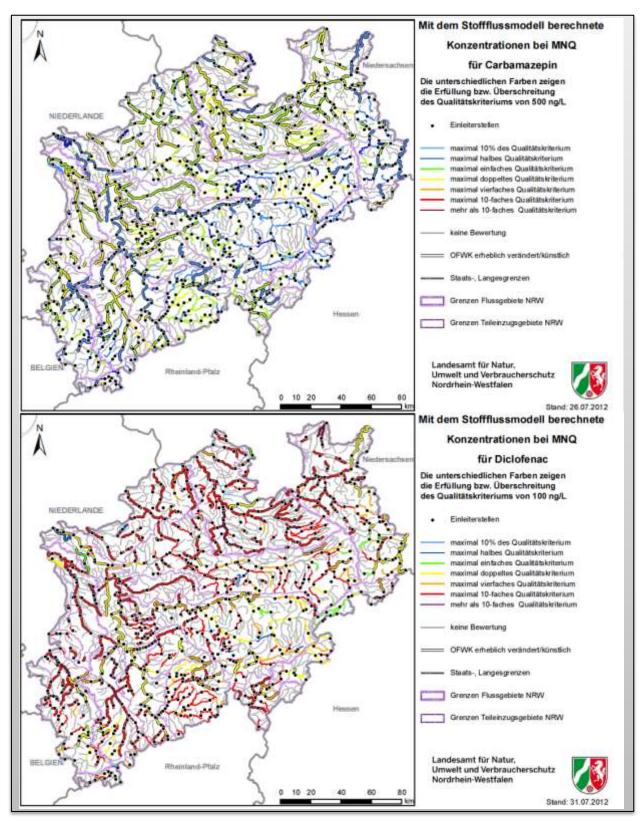


Abbildung 22: Risikoquotienten von Carbamazepin und Diclofenac extrapoliert auf die Oberflächenwasserkörper in Nordrhein-Westfalen. Die Farbgebung richtet sich jeweils nach dem höchsten ermittelten Wert pro Oberflächenwasserkörper bei MNQ.

5.3.5. Vergleich mit trinkwasserspezifischen Zielwerten

In NRW wird ein Grossteil des Trinkwassers aus Uferfiltraten von Fliessgewässern gewonnen. Die Reinheit der Oberflächengewässer hat demzufolge eine besonders hohe Wichtigkeit. Neben den ökotoxikologisch basierten Qualitätskriterien wurden daher trinkwasserspezifische Zielwerte definiert (siehe Anhang 4). Diese Zielwerte sind zumindest für Oberflächenwasserkörper mit Trinkwasser-Nutzung (gemäss WRRL, Art. 7) relevant. Für die Arzneimittel gilt nach dem vorliegenden Bewertungskonzept (Anhang 4) generell 0.1 µg/L als Vorsorgewert (Expertenkommission Programm "Reine Ruhr" und MKULNV, 2012), sofern nicht ein niedrigerer toxikologisch abgeleiteter Wert vorliegt (Umweltbundesamt, 2011).

Für Benzotriazol wurde gemäss dem TTC-Konzept vom bayerischen Landesamt für Gesundheit und Lebensmittelsicherheit ein lebenslang gesundheitlich duldbarer Trinkwasserleitwert von 4.5 μ g/L ermittelt (LfU und LGL, 2012). Für Industriechemikalien, zu denen ein toxikologisch begründeter Trinkwasserleitwert vorliegt (auch TTC oder QSAR möglich), der niedriger als 10 μ g/L ist, wird nach dem Bewertungskonzept gemäss Anhang 4 dieser Wert als GOW (gesundheitlicher Orientierungswert) verwendet. Deshalb wird für Benzotriazol der GOW 4,5 μ g/L verwendet.

Für Diclofenac und Clarithromycin, die beide ökotoxikologisch begründete Qualitätskriterien aufweisen, die gleich gross oder tiefer als der Vorsorgewert sind ändert sich in der Bewertung nichts. Für Benzotriazol, Carbamazepin, Metoprolol und Sulfamethoxazol ist im Vergleich zur ökotoxikologischen Beurteilung (siehe oben, Abschnitt 5.3.3) der Vorsorge-bzw. GOW-Wert tiefer als das ökotoxikologische Qualitätskriterium. Dies führt zu einer kritischeren Bewertung dieser Stoffe in Bezug auf die Trinkwassergewinnung, und infolgedessen zu einer grösseren Anzahl Überschreitungen bezgl. des angewandten Kriteriums. In Abbildung 23 sind die relativen Verteilungen der Zielwert -Überschreitungen der Vorfluter an den 641 Einleitstellen der Kläranlagen für die sechs Mikroschadstoffe Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol und Sulfamethoxazol unter Verwendung der trinkwasserspezifischen Zielwerte gemäss Bewertungskonzept "Reine Ruhr" (Anhang 4) abgebildet.

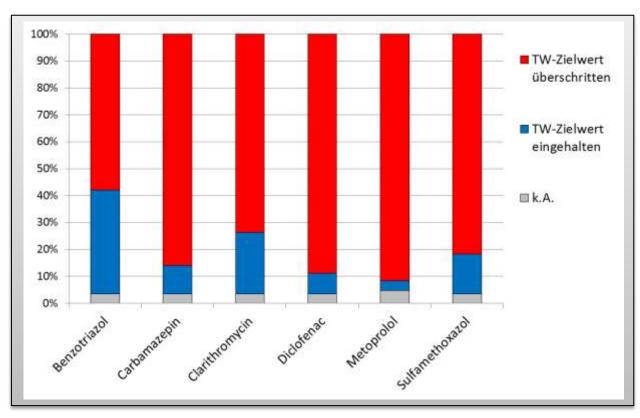


Abbildung 23: : Relative Verteilung der Trinkwasser-Zielwert Überschreitungen der 641 Vorfluter für Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol und Sulfamethoxazol.

In rund 60% aller modellierten Gewässerabschnitte sind die Trinkwasser-Zielwerte für alle sechs modellierten Stoffe gleichzeitig überschritten und in 80% mindestens für vier Stoffe. Die ökotoxikologisch basierten Qualitätskriterien wurden dagegen in keinem Gewässerabschnitt für alle sechs Stoffe gleichzeitig überschritten und nur in 35% aller modellierten Gewässerabschnitte für vier Stoffe (vergl. Abschnitt 5.3.3). Die in NRW aufgrund der Bedeutung der Gewässer für die Trinkwasserversorgung zu stellenden Anforderungen zum langfristigen Ressourcen- und Trinkwasserschutz machen somit einen zusätzlichen Aufwand zur Reinhaltung der entsprechend genutzten Gewässer bzw. Gewässerabschnitte erforderlich. Zu der Abbildung 23 ist anzumerken, dass hier sämtliche Vorfluter diesem Bewertungsverfahren unterzogen worden sind. In der weiteren Umsetzung ist es dagegen nur erforderlich, die Oberflächenwasserkörper mit Trinkwasser-Nutzung (gemäss WRRL, Art. 7) sowie deren Oberläufe entsprechend zu berücksichtigen.

5.3.6. Zusammenfassung IST-Zustand

Die Analysen des IST-Zustandes der Gewässer in Nordrhein-Westfalen zeigen einen weitreichenden Handlungsbedarf in Bezug auf den Arzneimitteleintrag aus kommunalem Abwasser. Das Qualitätskriterium für Diclofenac ist in 90% der Vorfluter unterhalb der

Einleitstellen der Kläranlagen überschritten. Von den sechs modellierten Mikroschadstoffen Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol und Sulfamethoxazol, überschreiten in 35% der modellierten Vorfluter vier Stoffe das Qualitätskriterium.

In Nordrhein-Westfalen wird viel Trinkwasser aus Uferfiltrat von Oberflächengewässern gewonnen und somit ist der Schutz der Trinkwasserressourcen von grosser Bedeutung. Wenn vorsorgliche Werte zum Schutz des Trinkwassers für die Oberflächenwasserkörper angewendet werden, welche für Arzneimittel nach dem GOW-Ansatz generell 0.1 µg/L pro Einzelstoff betragen, ergibt sich für diese Gewässer ein noch dringenderer Handlungsbedarf in Bezug auf die Reduktion von Mikroschadstoffen aus kommunalem Abwasser, als bei der ausschliesslichen Anwendung von ökotoxikologisch basierten Qualitätskriterien (Expertenkommission Programm "Reine Ruhr" und MKULNV, 2012).

Im Vergleich zu anderen Ländern ist der Druck auf die Gewässer in Nordrhein-Westfalen, aufgrund der hohen Bevölkerungsdichte und der intensiven Gewässernutzung und Industrie sehr hoch. In der vergleichbaren Studie "Strategie Micropoll" für die Schweiz, wurden in den Gewässern durchschnittlich wesentlich tiefere Abwasseranteile und daher auch tiefere Arzneimittelkonzentrationen ermittelt (Abegglen, et al., 2012).

6. SZENARIENANALYSEN

6.1 Szenarienauswahl

Um den Erfolg des Ausbaus einzelner Kläranlagen mit weitergehenden Verfahren abschätzen und vergleichen zu können sowie für die Gegenüberstellung der Auswirkungen unterschiedlicher Strategien auf die Frachten und Konzentrationen im Gewässer und auf die Trinkwassersituation im Bundesland NRW, wurden verschiedene Szenarienanalysen durchgeführt. Zusammen mit dem MKULNV und dem LANUV wurden vier verschiedene Reduktionsmassnahmenszenarien (Szenarien A bis D) definiert:

- A) (1) Ertüchtigung/Ausbau von Kläranlagen im Einzugsgebiet von Oberflächenwasserkörpern (OFWK), aus denen täglich mehr als 100 m³ Trinkwasser gewonnen wird (OFWK gemäß Art.7 der EU-WRRL) und sich näher als 10 km im Fließverlauf oberhalb der Trinkwassergewinnungsanlage befinden; sowie
 - (2) spezielle Betrachtung von Kläranlagen, die sich im Fließverlauf in 2 km oberhalb einer Trinkwassergewinnungsanlage befinden.
- B) Ertüchtigung/Ausbau von 100 Kläranlagen mit Flockungsfiltration, welche mit Aktivkohlefilter ersetzt werden.
- C) (1) Ausbau von 37 Kläranlagen > 100'000 angeschlossenen Einwohnern mit zusätzlicher Ozonung oder zusätzlicher Aktivkohlebehandlung.
 - (2) Ausbau von 67 Kläranlagen > 100'000 Plangrösse mit zusätzlicher Ozonung oder zusätzlicher Aktivkohlebehandlung.
- D) Ausbau der Kläranlagen, welche im Gewässer ökotoxikologisch problematische Konzentrationen von organischen Mikroschadstoffen verursachen:
 - (1) Kläranlagen >10'000 EW kommen für Ausbau in Frage
 - (2) Alle Kläranlagen kommen für den Ausbau in Frage

Die vier oben aufgelisteten Szenarien werden in den folgenden Abschnitten einzeln beschrieben und die Resultate der Berechnungen dargestellt.

6.2 Eliminationsraten einzelner Mikroschadstoffe in weitergehenden Verfahren

Um die Auswirkungen des Ausbaus einzelner Kläranlagen auf die Gewässer korrekt modellieren zu können, sind Informationen zum Verhalten der betrachteten Mikroschadstoffe in der weitergehenden Reinigungsstufe nötig. Die Eliminationsraten sind in erster Linie Stoff- und Verfahrensabhängig. In einer Arbeit im Rahmen des Projektes "Strategie Micropoll" (Götz, et al.,

2010), wurden die durchschnittlichen Eliminationsraten von Mikroschadstoffen in der biologischen Stufe, in der Pulveraktivkohlen-Stufe und in der Ozonung aus verschiedenen Literaturstudien zusammengefasst. Für die Berechnung der Szenarien, welches Übersichtsberechnungen sind, wird nicht zwischen einem möglichen Ausbau mit Pulveraktivkohle oder einer Ozonung unterschieden. Dazu kommt, dass je nach Verfahrensführung und den vorgeschalteten Verfahren, die erreichbare Eliminierungs-und Abbaurate variieren kann. Beispielsweise spielt für die Eliminationseffizienz der Pulveraktivkohleadsorption der DOC eine entscheidende Rolle (Zwickenpflug, et al., 2010).

In Tabelle 6 im Abschnitt 3.2 (Stoffauswahl und -daten) sind die Eliminations-und Abbauraten für verschiedene Mikroschadstoffe angegeben.

Für die hier durchgeführten Szenarienanalysen wurden über beide Verfahren gemittelte Eliminations- und Abbauleistungen verwendet (PAK, Ozonung, ohne biologische Stufe), welche für Carbamazepin und für Diclofenac zusätzlich zur Wirkung der konventionellen Abwasserreinigung je 90% betragen (vergl. Tabelle 6, Abschnitt 3.2).

6.3 Szenario A: Trinkwassergewinnung

Die Trinkwassergewinnung aus Oberflächengewässern (Talsperren), Uferfiltraten (Transport des Flusswassers durch die Uferzone bis zu den Förderbrunnen, beispielsweise Rhein) und Grundwasseranreicherung (Oberflächenwasser wird dabei direkt entnommen und in Versickerungsbecken infiltriert, beispielsweise Ruhr) spielt in Nordrhein-Westfalen eine wichtige Rolle.

Im Szenario A werden alle Kläranlagen ausgebaut, welche näher als 10 km flussaufwärts einer Trinkwasserfassung liegen, aus der täglich mehr als 100 m³ Trinkwasser gewonnen wird. Im Abschnitt 2.6 (Kläranlagen mit Einleitung in trinkwasserrelevante Gewässer) sind diese Kläranlagen in Tabelle 4 aufgelistet. Im Szenario A2 werden die Kläranlagen, welche näher als 2 km oberhalb einer Trinkwasserfassung liegen speziell betrachtet und nur diese ausgebaut.

Im Szenario A1 werden insgesamt 56 Kläranlagen ausgebaut und im Szenario A2 insgesamt 16. In der Tabelle 12 ist eine Übersicht der Auswirkungen des potentiellen Ausbaus der entsprechenden Kläranlagen auf die Gesamtstofffracht der beiden Teilszenarien wiedergegeben.

Tabelle 12: Szenario A, Trinkwassergewinnung. Anzahl auszubauender Kläranlagen, angeschlossene Einwohner und Frachtreduktion der zwei Teilszenarien.

	Szenario A1	Szenario A2				
Auszubauende Kläranlagen und angeschlossene Einwohner						
Anzahl Kläranlagen mit weitergehender Reinigungsstufe	56	16				
Anzahl angeschlossenen Einwohner an Kläranlagen mit w. Reinigungsstufe	3'970'000	925'000				
Reduktion der Stofffracht an der Landesgrenze						
Rhein (nur Stoffbelastung aus NRW berücksichtigt)	26%	5.2%				
Weser	4%	0.2%				
Rur (Eifel / Deutschland)	0.2%	-				
Ems	3%	-				
Niers	-	-				
Berkel	-	-				
Große Aue	-	-				
Reduktion der Stofffracht in gesamt NRW						
Reduktion Stofffracht (gemittelt)	20%	4.7%				

Beim Ausbau der 56 weniger als 10 km oberhalb von Trinkwasserfassungen liegenden Kläranlagen, wird insgesamt das Abwasser von rund 4 Mio. angeschlossenen Einwohner weitergehend behandelt und somit die gesamte Stofffracht um 20% reduziert, bei der Annahme einer mittleren Eliminationsrate von 90% in weitergehenden Verfahren.

Bei der speziellen Betrachtung der weniger als 2 km oberhalb von Trinkwasserfassungen liegenden Kläranlagen, sind insgesamt nur 16 Kläranlagen betroffen. Wenn diese 16 Kläranlagen ausgebaut würden, könnte das Abwasser von ca. 1 Mio. angeschlossenen Einwohnern weitergehend gereinigt und die Gesamtstofffracht um ca. 5% reduziert werden.

In Abbildung 24 sind die modellierten Konzentrationen von Carbamazepin an den Einleitstellen der 56 Kläranlagen dargestellt, welche im Szenario A1 mit einer weitergehenden Reinigungsstufe ausgebaut werden. Für die Untersuchung der Wirkung der Massnahmen auf das Vorkommen von Mikroschadstoffen im Rohwasser, eignet sich die Analyse der Carbamazepin-Konzentrationen, da Carbamazepin ein guter Indikator für die Belastung von Trinkwasser mit Mikroschadstoffen ist und in Trinkwasserfassungen vereinzelt schon nachgewiesen wurde.

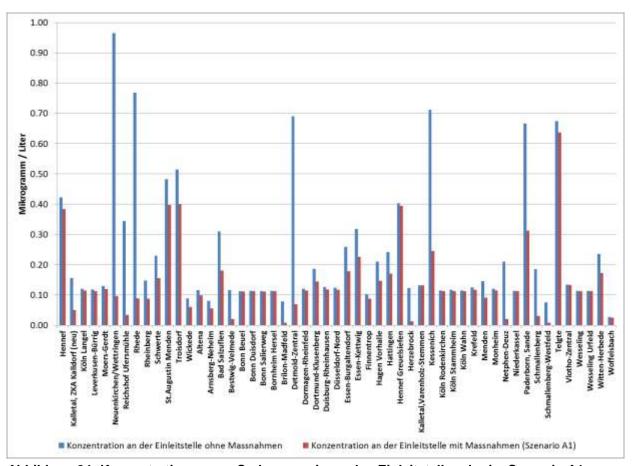


Abbildung 24: Konzentrationen von Carbamazepin an den Einleitstellen der im Szenario A1 ausgebauten Kläranlagen im IST-Zustand und nach dem Ausbau mit einer weitergehenden Reinigungsstufe (Annahme: 90% Elimination von Carbamazepin in der weitergehenden Stufe).

Die am höchsten belasteten Gewässer, an welchen sich wichtige Trinkwasserfassungen befinden, werden grösstenteils durch die Massnahmen gemäss Szenario A1 gut entlastet, wenn oberhalb der Fassungen liegende Kläranlagen ausgebaut werden. Dies ist der Fall für Neuenkirchen/Wettringen, Reichshof Ufersmühle, Rhede, Detmold-Zentral, Kessenich und Paderborn Sande. Insgesamt wird in 12 Fällen, die ohne weitergehende Massnahmen Überschreitungen des Trinkwasser-Vorsorgewertes von 0.1 µg/L aufweisen, die Konzentration unter den Trinkwasser-Zielwert von 0.1 µg/L reduziert.

Für viele Trinkwasserfassungen an grösseren Gewässern, welche durch eine grosse Anzahl oberliegender Kläranlagen resp. eine grosse Anzahl oberliegender angeschlossene Einwohner belastet werden, ist der Effekt des Ausbaus der direkt oberliegenden Kläranlage gering. D.h. die Vorbelastung des Gewässers ist entscheidend für die Belastung der Trinkwassereinzugsgebiet mit persistenten Mikroschadstoffen. Dies ist beispielsweise bei verschiedenen Kläranlagen von Bonn und Köln der Fall. Aus Gesichtspunkten der Hygienisierung oder für weniger persistente Stoffe, welche während des Transportes im Gewässer flussabwärts abgebaut werden, kann ein Ausbau der am nächsten an der Trinkwasserfassung liegenden Kläranlage jedoch trotzdem sinnvoll sein.

6.4 Szenario B: Ausbau von Kläranlagen mit Flockungsfiltration

Im Szenario B wird die Auswirkung eines Ausbaus aller Kläranlagen mit Flockungsfiltration geprüft. Dies sind insgesamt 100 Anlagen (vgl. Tabelle 2 in Abschnitt 2.4, Kläranlagen mit Flockungsfiltration). Der Hintergrund dieses Szenarios ist die Idee, die Flockungsfiltrationen durch Aktivkohle zu ersetzten und somit durch relativ geringe Umbaukosten für diese Anlagen eine weitergehende Reinigungsstufe für Mikroschadstoffe umsetzen zu können.

In Tabelle 13 sind die Resultate des Szenarios B zusammengefasst.

Tabelle 13: Szenario B, Ausbau der Kläranlagen mit Flockungsfiltration. Anzahl auszubauender Kläranlagen, angeschlossene Einwohner und Frachtreduktion.

Auszubauende Kläranlagen und angeschlossene Einwohner					
Anzahl Kläranlagen mit weitergehender Reinigungsstufe	100				
Anzahl angeschlossenen Einwohner an Kläranlagen mit w. Reinigungsstufe	5'860'000				
Reduktion der Stofffracht an der Landesgrenze					
Rhein (nur Stoffbelastung aus NRW berücksichtigt)	26%				
Weser	15%				
Rur	70%				
Ems	16%				
Niers	10%				
Berkel	30%				
Große Aue	-				
Reduktion der Stofffracht in gesamt NRW					
Reduktion Stofffracht (gemittelt) 30%					

Insgesamt wird die in Nordrhein-Westfalen emittierte Stofffracht mit dieser Massnahme um rund 30% reduziert, wenn von einer mittleren Elimination in der weitergehenden Reinigungsstufe von rund 90% (Bsp. Carbamazepin und Diclofenac) ausgegangen wird. Auf alle 641 Anlagen bezogen, heisst das, dass mit dem Ausbau von 16% aller Kläranlagen in Nordrhein-Westfalen die Stofffracht um ein Viertel reduziert werden kann. Um die gesamte Stofffracht zu reduzieren scheint diese Massnahme daher gut geeignet.

Um die Auswirkungen auf die Wasserqualität der Vorfluter unterhalb der einzelnen Einleitstellen zu beurteilen, wurden die Konzentrationen von Diclofenac bei MNQ beim Ausbau der 100 Kläranlagen mit Flockungsfiltration modelliert und mit dem Qualitätskriterium von 0.1 µg/L verglichen. In der Abbildung 25 sind die resultierenden Risikoquotienten bzw. Zustandsklassen dargestellt.

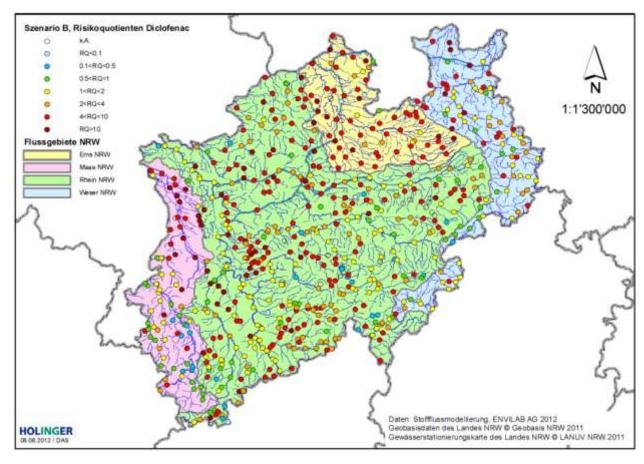


Abbildung 25: Risikoquotienten von Diclofenac in den Vorflutern unterhalb der Einleitstellen der 641 modellierten Kläranlagen beim Ausbau der 100 Kläranlagen mit bestehendem Flockungsfilter.

Die Auswirkungen des Ausbaus der 100 Kläranlagen auf die Einhaltung des Qualitätskriteriums für Diclofenac sind auf das ganze Bundesland gesehen relativ gering. Die Anzahl Vorfluter, welche eine Überschreitung des Qualitätskriteriums von Diclofenac zeigen, kann von 90% (IST-Zustand) auf 82% reduziert werden. Dabei ergibt sich immerhin mehr als eine Verdoppelung der Vorfluter unterhalb der Einleitstellen, die das Qualitätskriterium erfüllen von rund 5% auf ca. 12% (5% der Einleitstellen sind aufgrund der Datenlage nicht bewertbar, siehe oben).

Zusammenfassend lässt sich sagen, dass die im Szenario B analysierte Massnahme des Ausbaus zur Reduktion des gesamten Stoffeintrags von Mikroschadstoffen (Reduktion um 25%) gut geeignet ist, aber nur begrenzt zur Entlastung der ökotoxikologisch problematischen Vorfluter führt.

6.5 Szenario C: Ausbau aller Anlagen >100'000 Einwohner

Das Szenario C hat das Ziel eine möglichst grosse Reduktion der gesamten Stofffracht mit einem möglichst wirtschaftlichen Ansatz zu erreichen. Es wurde in verschiedenen Studien gezeigt, dass die Kosten pro Einwohner mit der Anlagengrösse abnehmen (Abegglen, et al., 2012). Um eine möglichst hohe Frachtreduktion möglichst günstig zu erreichen, ist es daher sinnvoll in erster Linie die grössten Kläranlagen auszubauen.

Als Grössenkriterium für einen Ausbau wurde einmal die Zahl der angeschlossenen Einwohner (Szenario C1) zugrunde gelegt und einmal die Plangrösse (Szenario C2). In beiden Fällen wurde 100'000 als Grössenkriterium verwendet. In der Tabelle 14 sind die Resultate zusammengefasst.

Tabelle 14: Szenario C, Ausbau aller Kläranlagen mit (C1) mehr als 100'000 angeschlossenen Einwohnern und (C2) mehr als 100'000 Plangrösse. Anzahl auszubauender Kläranlagen, angeschlossener Einwohner und Frachtreduktion von Mikroschadstoffen.

	Szenario C1 (>100'000 ang. Einw.)	Szenario C2 (>100'000 Plangrösse)				
Auszubauende Kläranlagen und angeschlossene Einwohner						
Anzahl Kläranlagen mit weitergehender Reinigungsstufe						
Anzahl angeschlossenen Einwohner an Kläranlagen mit w. Reinigungsstufe	8'530'000	10'180'000				
Reduktion der Stofffracht an der Landesgrenze						
Rhein (nur Stoffbelastung aus NRW berücksichtigt)	50%	56%				
Weser	6%	11%				
Rur	27%	33%				
Ems	15%	35%				
Niers	51%	69%				
Berkel	-	30%				
Große Aue	-	-				
Reduktion der Stofffracht in gesamt NRW						
Reduktion Stofffracht (gemittelt)	43%	52%				

Wenn die angeschlossenen Einwohner als Ausbaukriterium verwendet werden (Szenario C1), fallen insgesamt 41 Kläranlagen mit total 8.5 Mio. angeschlossenen Einwohnern in die Auswahl der auszubauenden Anlagen. Dieses Szenario zeigt auf, dass mit dem Ausbau von rund 6% aller Kläranlagen (41 von total 641), die emittierte Stofffracht um 43% vermindert werden kann. Für die Verminderung der gesamten Stofffracht und somit auch für den Ressourcenschutz (Trinkwasserschutz der Unterlieger, Meeresschutz) ist dies somit eine sehr effiziente Möglichkeit.

Wird die Plangrösse von 100'000 als Kriterium verwendet, müssten 71 Kläranlagen ausgebaut werden (Szenario C2). In diesem Fall würde die Stofffracht um 52%, also um 9% stärker redu-

ziert, als der Ausbau von 41 Anlagen mit mehr als 100'000 angeschlossenen Einwohnern. Es müssten demnach fast doppelt so viele Kläranlagen ausgebaut werden, um eine Reduktion von weiteren 9% zu erreichen im Vergleich mit Szenario C1.

Da die Planungsgrösse auch Industrieabwasser umfasst, eignet sich das Kriterium angeschlossener Einwohner besser als die Planungsgrösse zur möglichst kosteneffizienten Reduktion von Mikroschadstoffen aus kommunalem Abwasser.

6.6 Szenario D: Optimierung zur Senkung ökotoxikologisch problematischer Konzentrationen in den Gewässern

6.6.1. Übersicht und Vorgehen

Das Szenario D hat zum Ziel, besonders stark belastete Gewässerabschnitte zu entlasten. Es sollen im Vorfluter unterhalb der Einleitstellen von allen Kläranlagen die Qualitätskriterien der betrachteten Substanzen eingehalten werden. Das Vorgehen ist das folgende (Ort, et al., 2007): Falls es unterhalb der Einleitstelle der ersten Kläranlage im Vorfluter zu einer Überschreitung des Qualitätskriteriums kommt, würde diese ausgebaut. Dann wird berechnet, ob mit diesem Ausbau es immer noch zu Überschreitungen kommt. Falls ja, wird auch die nächste Kläranlage ausgebaut, sonst nicht. Das Vorgehen wird iterativ flussabwärts für alle folgenden Kläranlagen wiederholt und so für ganze Flusseinzugsgebiete optimiert. Es wird also nur das Minimum an Kläranlagen, welches zum Erreichen des Qualitätsziels nötig ist, ausgebaut.

Im Szenario D1 werden für den Ausbau nur Kläranlagen berücksichtigt, an welche mehr als 10'000 Einwohner angeschlossen sind, d.h. auch wenn es zu einer Überschreitung des Qualitätskriteriums bei einer kleineren Anlage kommt, wird diese nicht ausgebaut. Im Szenario D2 wird die Grösse der Kläranlage nicht berücksichtigt.

Diese iterativen Optimierungen wurden einmal für Diclofenac mit dem Qualitätskriterium $0.1 \, \mu g/L$ und einmal für Carbamazepin mit dem Qualitätskriterium von $0.5 \, \mu g/L$ durchgeführt. In der Tabelle 15 sind die Resultate der Szenarien D1 und D2 für diese beiden Mikroschadstoffe wiedergegeben.

Tabelle 15: Szenario D, Substanzabhängiger Ausbau von Kläranlagen (abhängig vom Qualitätskriterium). Anzahl auszubauender Kläranlagen, angeschlossener Einwohner und Frachtreduktion.

	Szenario D1		Szenario D2				
	Diclofenac	Carbamazepin	Diclofenac	Carbamazepin			
Auszubauende Kläranlagen und angeschlossene Einwohner							
Anzahl Kläranlagen mit weitergehender Reinigungsstufe	304	123	528	195			
Anzahl angeschlossenen Einwohner an Kläranlagen mit w. Reinigungsstufe	15'630'000	5'060'000	16'170'000	5'230'000			
Reduktion der Stofffracht an der Landesgrenze							
Rhein (nur Stoffbelastung aus NRW berücksichtigt)	80%	17%	82%	18%			
Weser	8%	8%	11%	8%			
Rur	73%	44%	78%	46%			
Ems	72%	58%	77%	58%			
Niers	85%	61%	89%	65%			
Berkel	85%	14%	90%	14%			
Große Aue	90%	67%	90%	67%			
Reduktion der Stofffracht in gesamt NRW							
Reduktion Stofffracht (gemittelt)	79%	24%	82%	25%			

Im Folgenden werden die Szenarien D1 und D2 für Diclofenac und Carbamazepin einzeln diskutiert.

6.6.2. Optimierung der Wasserqualität hinsichtlich ökotoxikologischer Kriterien mit Diclofenac als Indikatorstoff

Wenn alle Kläranlagen mit mehr als 10'000 angeschlossenen Einwohnern, welche eine Überschreitung des Qualitätskriterium von Diclofenac verursachen, gemäss dem in Abschnitt 6.6.1 beschriebenen optimierten Vorgehen ausgebaut werden sollen, müssten insgesamt 304 Kläranlagen, also etwa die Hälfte aller Anlagen in Nordrhein-Westfalen ausgebaut werden. Mit dem Ausbau dieser 304 Kläranlagen würde das Abwasser von mehr als 15 Mio. Einwohnern weitergehend gereinigt und 79% der gesamten Stofffracht eliminiert (Tabelle 15).

In Abbildung 26 sind die Risikoquotienten von Diclofenac in den Vorflutern unterhalb der Einleitstellen der Kläranlagen für das Szenario D1 abgebildet.

Diclofenac steht hier exemplarisch für einen beliebigen Stoff, der mit einer vergleichbaren pro Kopf-Menge emittiert wird, persistent ist und für den ein Qualitätskriterium von 0.1 µg/L definiert ist. Im Fall von Diclofenac wurde beim Vergleich mit Messdaten gezeigt, dass die modellierten Frachten und Konzentrationen auch tatsächlich in den Oberflächengewässern nachgewiesen wurden.

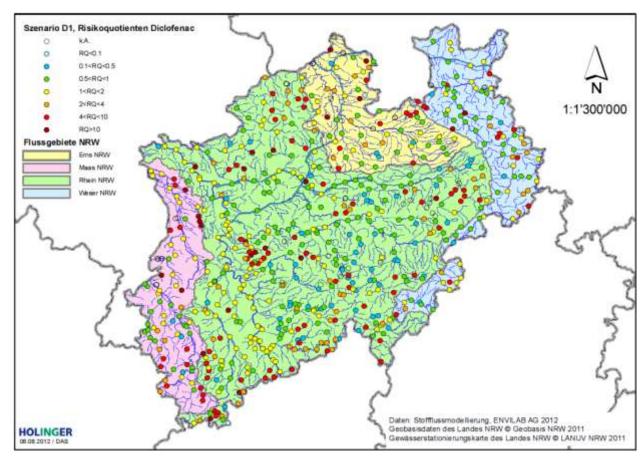


Abbildung 26: Risikoquotienten von Diclofenac in den Vorflutern unterhalb der Einleitstellen der Kläranlagen im Szenario D1 (optimierter Ausbau für Diclofenac der Kläranlagen mit >10'000 angeschlossenen Einwohnern).

Die Häufigkeit der Überschreitungen des Qualitätskriteriums von $0.1~\mu g/L$ können mit diesen Massnahmen von 90% aller Vorfluter (IST-Zustand) auf 55% gesenkt werden. Dies ist immerhin eine Reduktion um fast die Hälfte. Die als "schlecht" beurteilten Vorfluter können sogar von 285 auf 122 gesenkt werden. Allerdings müssten bei der Umsetzung dieses Szenarios auch rund die Hälfte aller Kläranlagen in Nordrhein-Westfalen ausgebaut werden.

Wenn die Kläranlagen ohne Grössenkriterium gemäss Szenario D2 auf die Überschreitungen von Diclofenac optimiert ausgebaut werden sollen, müssten 520 der 641 Kläranlagen in Nordrhein-Westfalen ausgebaut werden. Dies sind rund 80% aller Kläranlagen und entsprechend etwa 16 Mio. der angeschlossenen Einwohner. Die gesamte Stofffracht würde nur geringfügig reduziert gegenüber dem Ausbau der 304 Kläranlagen im Szenario D1, nämlich um weitere 3% auf 82%.

In Abbildung 27 sind die Risikoquotienten von Diclofenac in den Vorflutern unterhalb der Einleitstellen der Kläranlagen für das Szenario D2 abgebildet.

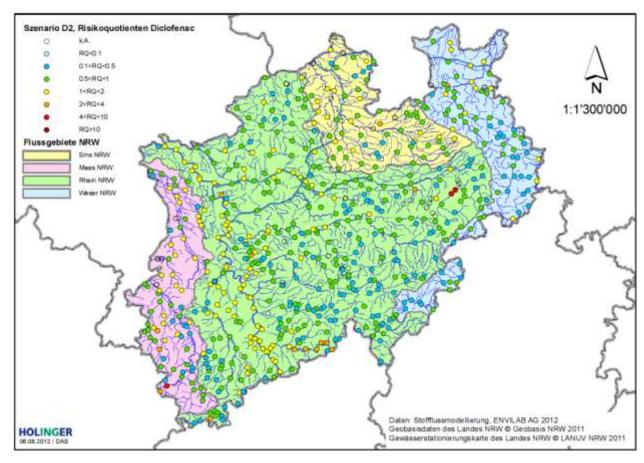


Abbildung 27: Risikoquotienten von Diclofenac in den Vorflutern unterhalb der Einleitstellen der Kläranlagen im Szenario D2 (optimierter Ausbau für Diclofenac aller Kläranlagen).

Wenn kein Grössenlimit für den Ausbau von Kläranlagen gesetzt wird, lassen sich mit dem Ausbau die Anzahl Vorfluter, die das Qualitätskriterium für Diclofenac nicht erreichen auf 159 reduzieren. Dass die Konzentrationen nicht bei allen Vorflutern unter das Qualitätskriterium gesenkt werden können, hat im Wesentlichen zwei Ursachen: (i) Gewisse Vorfluter bringen eine Vorbelastung durch Oberlieger mit, welche bereits zu einer Überschreitung des Qualitätskriteriums an den entsprechenden Stellen führt und (ii) die Reduktion der Stofffracht durch die weitergehende Stufe von angenommenen 90% reicht nicht aus, um bei gewissen Vorflutern, welche bei MNQ fast ausschliesslich aus Abwasser bestehen, das Qualitätskriterium zu erreichen.

Die Plausibilität der Ergebnisse für die Vorfluter, welche auch nach dem Ausbau immer noch als schlecht beurteilt werden, konnte im Rahmen dieser Studie nicht im Einzelfall evaluiert werden. Diese hohen berechneten Konzentrationen kommen zustande, wenn der mit der kumulierten gemessenen Abwassermenge korrigierte MNQ immer noch viel kleiner ist als der durch die durchschnittliche Abwassermenge pro Person zu Stande kommende Abfluss. Da das Modell primär auf der Berechnung von Stoffflüssen basiert ist, können unter diesen Umständen im

Einzelfall viel höhere Konzentrationen zu Stande kommen als durchschnittlich im Abwasser gemessen werden. Diese Fälle müssen im Einzelnen überprüft werden.

Zusammenfassend lässt sich sagen, dass fast alle Kläranlagen in Nordrhein-Westfalen ausgebaut oder das Abwasser auf eine grössere unterliegende Kläranlage abgeleitet werden müssten, wenn das Qualitätskriterium von Diclofenac bei MNQ flächendeckend erreicht werden soll.

6.6.3. Optimierung der Wasserqualität hinsichtlich ökotoxikologischer Kriterien mit Carbamazepin als Indikatorstoff

Die Optimierung der Wasserqualität wurde neben dem momentan als sehr kritisch identifizierten Arzneimittel Diclofenac auch für Carbamazepin, welches mit 0.5 µg/L ein fünfmal höheres Qualitätskriterium aufweist, durchgeführt.

Die Ergebnisse von Carbamazepin als Indikatorstoff können helfen den Handlungsbedarf für die verschiedenen Vorfluter und Oberflächenwasserkörper zu priorisieren. Da das Qualitätskriterium von Diclofenac in 90% der Vorfluter unterhalb der Kläranlagen überschritten wird und bei rund einem Viertel dieser Vorfluter um mehr als das vierfaches Qualitätskriterium, ist eine Priorisierung der Anlagen allein aufgrund der Ergebnisse von Diclofenac schwierig. Wenn die Konzentration von Carbamazepin das Qualitätskriterium von 0.5 μg/L in den entsprechenden Vorfluter überschreitet, sind diese Vorfluter in jedem Fall als stark belastet zu beurteilen, da bei einer Überschreitung von Carbamazepin die Qualitätskriterien anderer Stoffe, wie Clarithromycin, Diclofenac und Sulfamethoxazol rechnerisch auf jeden Fall auch überschritten werden (vgl. 5.3.3, Abbildung 21).

Wenn alle Kläranlagen mit mehr als 10'000 angeschlossenen Einwohnern, welche eine Überschreitung des Qualitätskriteriums von Carbamazepin verursachen, ausgebaut werden sollen, müssten insgesamt 123 Kläranlagen, also etwa ein Fünftel aller Anlagen in Nordrhein-Westfalen ausgebaut werden. Mit dem Ausbau dieser 123 Kläranlagen würde das Abwasser von mehr als 5 Mio. Einwohnern weitergehend gereinigt und 24% der gesamten Stofffracht eliminiert (Tabelle 15).

In der Abbildung 28 sind die Risikoquotienten von Carbamazepin in den Vorflutern unterhalb der Einleitstellen der Kläranlagen für das Szenario D1, den optimierten Ausbau aller Anlagen mit mehr als 10'000 angeschlossenen Einwohnern, abgebildet.

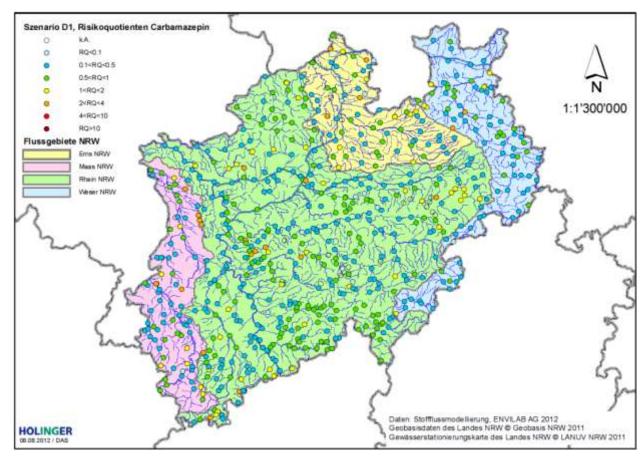


Abbildung 28: Risikoquotienten von Carbamazepin in den Vorflutern unterhalb der Einleitstellen der Kläranlagen im Szenario D1 (optimierter Ausbau für Carbamazepin der Kläranlagen mit >10'000 angeschlossenen Einwohnern).

Mit dem auf Carbamazepin als Indikatorstoff optimierten Ausbau der Anlagen mit mehr als 10'000 angeschlossenen Einwohnern, könnten die Überschreitungen des Qualitätskriteriums von 35% aller Vorfluter im IST-Zustand auf 12% gesenkt werden, also um etwa einen Faktor 3. Der Ausbau dieser 123 Kläranlagen wäre für eine Verbesserung des ökotoxikologischen Gewässerzustandes als prioritär zu betrachten.

Wenn kein Grössenlimit für die Kläranlagen berücksichtigt wird und die Kläranlagen für die Verbesserung des Gewässerzustandes optimiert ausgebaut werden, wären mit dem Kriterium Carbamazepin 195 Anlagen betroffen, die rund 5.2 Mio. angeschlossene Einwohner erfassen. Es würde dabei 25% der gesamten Stofffracht eliminiert. Dies sind insgesamt nur 1% mehr Frachtelimination oder 170'000 angeschlossenen Einwohner mehr als beim Szenario D1, in welchem nur Kläranlagen über 10'000 Einwohner berücksichtigt werden, es müssten aber 72 Anlagen mehr ausgebaut werden. Dies zeigt auf, dass in NRW, in Bezug auf kritische Konzentrationen in den Vorflutern die kleinen Anlagen eine relativ wichtige Rolle spielen.

In der Abbildung 29 sind die Risikoquotienten von Carbamazepin in den Vorflutern unterhalb der Einleitstellen der Kläranlagen für das Szenario D2 abgebildet.

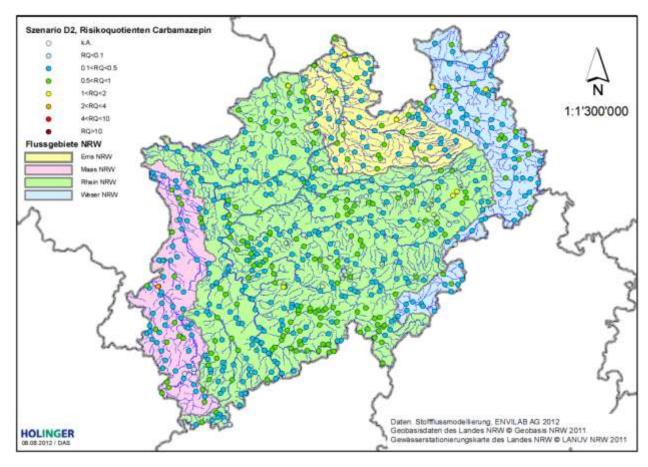


Abbildung 29: Risikoquotienten von Carbamazepin in den Vorflutern unterhalb der Einleitstellen der Kläranlagen im Szenario D2 (optimierter Ausbau für Carbamazepin aller Kläranlagen).

Mit dem auf das Kriterium Carbamazepin optimierten Ausbau aller betroffenen Anlagen, könnten die Überschreitungen des Qualitätskriteriums von 35% aller Vorfluter (IST-Zustand) auf 1.5% gesenkt werden, also um etwa einen Faktor 20. Der Ausbau dieser 195 Anlagen würde zu einer starken Verbesserung des Gewässerzustandes führen, wenn man die hier exemplarisch ausgewerteten Substanzen als Indikatoren für die Gesamtbelastung mit weiteren Mikroschadstoffen aus kommunalem Abwasser berücksichtigt. Da bei kleineren Anlagen, welche in diesem Fall ca. ein Drittel (72 Stück) der betroffenen Kläranlagen ausmachen, weitergehende Verfahren nicht effizient umzusetzen sind, sind für diese Anlagen die Möglichkeiten für eine Ableitung des Wassers in eine andere Kläranlage prioritär zu prüfen. Ein Ausbau mit einer weitergehenden Stufe ist bei solch kleinen Anlagen nicht besonders effizient (Abegglen, et al., 2012).

7. SCHLUSSFOLGERUNGEN UND AUSBLICK

7.1 Methodische Schlussfolgerungen

Die flächendeckende georeferenzierte Modellierung der Stoffflüsse und Konzentrationen von verschiedenen Mikroschadstoffen aus kommunalem Abwasser für Nordrhein-Westfalen ist eine geeignete Methode um den Handlungsbedarf abzuschätzen und das Ausmass der Problematik flächendeckend zu erfassen und Reduktionspotentiale systematisch zu ermitteln.

Die Vergleiche mit Messdaten von 51 Gewässergüte (GUES)-Messstellen durchgeführt wurden, haben gezeigt, dass für verschiedene Mikroschadstoffe sehr gute Übereinstimmungen zwischen den modellierten und den aus Messdaten abgeschätzten Stoffflüssen gefunden werden konnten. Gute Übereinstimmungen wurden für Benzotriazol, Carbamazepin, Diclofenac und Sotalol gefunden. Für diese Stoffe scheinen die getroffenen Modellannahmen gut zu stimmen und generell wurde eine gute Vorhersagegenauigkeit mit der Modellierung erreicht.

Das angewandte Modell eignet sich nicht für die Analyse von Einzelfällen. Die Genauigkeit im Einzelfall würde sich aber mit der Überprüfung aller Eingabedaten, im speziellen der verwendeten Abflussdaten bei kleinen bis sehr kleinen Gewässern, verbessern lassen. Gewisse lokale Situationen, wie beispielsweise die Versickerung des gesamten Bachs in den Untergrund und daraus resultierende MNQs der Oberflächengewässer von 0, wie es in einzelnen Karstregionen NRW's vorkommt, lassen sich mit dem angewandten Modell aber nicht abbilden. Für eine Übersichtsmodellierung und das Aufzeigen des landesweiten Handlungsbedarfs, ist die Genauigkeit des angewandten Stoffflussmodells jedoch ausreichend.

7.2 Gewässerschutz mit Blick auf ökotoxikologische Gewässergüte

Die Analyse des IST-Zustandes hat gezeigt, dass in vielen Vorflutern und Oberflächenwasserkörpern die Qualitätskriterien von verschiedenen Mikroschadstoffen überschritten werden. Von den untersuchten Mikroschadstoffen war Diclofenac am kritischsten.

Die Szenarienanalysen haben aufgezeigt, dass landesweit rund 90% aller Kläranlagen ausgebaut werden müssten, wenn Diclofenac mit dem Qualitätskriterium von 0.1 µg/L als Entscheidungsgrundlage zugrunde gelegt würde. Wenn man nur die Anlagen mit mehr als 10'000 angeschlossenen Einwohnern betrachtet, müssten davon noch rund die Hälfte ausgebaut werden.

Wenn alle sechs beurteilten Mikroschadstoffe Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol und Sulfamethoxazol betrachtet werden lässt sich in 35% aller Gewässer direkt unterhalb der Einleitstellen eine Überschreitung der Qualitätskriterien von vier der sechs modellierten Stoffe feststellen (Carbamazepin, Clarithromycin, Diclofenac und Sulfamethoxazol). Die betroffenen Kläranlagen sind aus ökotoxikologischer Sicht als prioritär zu

betrachten. Für die gesamtheitliche wasserwirtschaftliche Planung müssen jedoch weitere Kriterien wie beispielsweise die Morphologie und der ökologische und gesellschaftliche Wert (z.B. Trinkwasser, Badegewässer, Naherholungsgebiet etc.) der entsprechenden Gewässer betrachtet werden.

Die Modellrechnungen haben flächendeckend aufgezeigt, dass der Handlungsbedarf bezüglich Mikroschadstoffen im Bundesland Nordrhein-Westfalen gross ist. Dies ist insbesondere auf die hohe Bevölkerungsdichte und die bedeutende Vorbelastung der grossen Gewässer zurückzuführen. Der Rhein führt beispielsweise das Abwasser von rund 32 Mio. Personen beim Eintreten in Nordrhein-Westfalen bereits mit. Die sehr hohen Konzentrationen treten aber in erster Linie in den kleineren und mittelgrossen Gewässern auf, welche bei MNQ nur wenig Wasser führen und so sehr hohe Abwasseranteile aufweisen, nicht selten über 50%.

7.3 Frachtreduktion für Nordrhein-Westfalen gesamt

Die Szenarienanalysen zeigen auf, dass die gesamte Fracht an Mikroschadstoffen, welche ihren Ursprung in Nordrhein-Westfalen hat, mit dem Ausbau der grössten Kläranlagen, d.h. aller Anlagen mit mehr als 100'000 angeschlossenen Einwohnern, um fast die Hälfte reduziert werden könnte. Dies scheint daher eine effiziente Massnahme zu sein, um die Gesamtstoffemission deutlich zu reduzieren. Von dieser Massnahme wären insgesamt 41 Kläranlagen betroffen.

7.4 Optimierung zum Schutz der Trinkwasserressourcen

Die Optimierung des Schutzes von Trinkwasserressourcen hat in Nordrhein-Westfalen eine grosse Bedeutung, da erhebliche Mengen an Trinkwasser aus Oberflächenwasser oder von Oberflächenwasser beeinflussten Ressourcen (Uferfitrate oder Grundwasseranreicherungen) gewonnen werden. Bei der Analyse des Szenarios A hat sich gezeigt, dass mit dem Ausbau aller direkt oberliegenden Kläranlagen eine Entlastung von einigen sehr hoch belasteten Gewässern erreicht werden kann. Für viele Trinkwasserfassungen an grösseren Fliessgewässern, wie beispielsweise dem Rhein, der Ems oder der Ruhr ist der Effekt des Ausbaus der jeweils unmittelbar oberliegenden Kläranlage jedoch gering, da diese Gewässer eine erhebliche Vorbelastung mitbringen (vgl. Abschnitt 6.3, Szenario A: Trinkwassergewinnung). Ein optimaler Schutz von Trinkwasserressourcen könnte deshalb mit der Kombination der Szenarien A1 und C erreicht werden. Dabei werden folgende Kläranlagen ausgebaut:

- Kläranlagen mit >100'000 Einwohner und
- Kläranlagen, welche <10km flussaufwärts von bedeutenden Trinkwasserfassungen liegen.

Insgesamt würden in dieser Szenarienkombination 82 Kläranlagen ausgebaut werden, wobei davon 15 Kläranlagen mit beiden Kriterien überlappen, 26 Kläranlagen alleine aufgrund des Grössenkriteriums, und 41 Kläranlagen alleine aufgrund der Nähe zu einer unterliegenden Trinkwasserfassung ausgebaut werden.

Bei der Analyse der Kombination der Szenarien A1 und C zeigt sich auch, dass die Vorbelastung der Gewässer durch Oberlieger ausserhalb von Nordrhein-Westfalen, gerade für wichtige Gewässer wie den Rhein, weitaus bedeutender sein kann für die resultierenden Konzentrationen. Daher kann auch mit einem Ausbau aller grossen Kläranlagen (>100'000 angeschlossene Einwohner) in Nordrhein-Westfalen, was eine Reduktion von rund 43% des gesamten Stoffflusses aus NRW bringt, teilweise nur ein geringer Effekt erzielt werden kann.

In der Abbildung 30 sind die Konzentrationen von Carbamazepin an den Einleitstellen der Kläranlagen direkt oberhalb von Trinkwasserfassungen für die Szenarien A1 und C, das Szenario C inkl. der Reduktion der Belastung durch Oberlieger um 90%, sowie die Kombination beider Szenarien inkl. der Reduktion der Belastung durch die Oberlieger um 90%, angegeben.

Es zeigt sich bei diesen Analysen, dass eine deutliche Entlastung aller Fliessgewässer und des Rohwassers für die Trinkwassergewinnung erreicht werden könnte, wenn die Oberlieger ebenfalls Massnahmen ergreifen. NRW hat seinerseits Oberliegerfunktion für Niedersachsen und auch die Niederlande. Die alleinige Planung von Massnahmen in Nordrhein-Westfalen ist für einen effektiven Schutz der Trinkwasserressourcen jedoch nicht ausreichend. Für weitere Untersuchungen müsste abgeklärt werden, mit welcher Reduktion durch die Oberlieger NRW's gerechnet werden könnte. Weiter zeigt sich auch für ausschliesslich nordrhein-westfälische Flusseinzugsgebiete, wie beispielsweise das Ruhreinzugsgebiet, dass die Massnahmen des hier präsentierten Ausbauszenarios noch nicht ausreichend sind um den vorsorglichen Trinkwasserzielwert von 0.1 μg/L zu erreichen (siehe Abbildung 30, z.B. Witten-Herbede). Hier ist eine gesonderte flussgebietsbezogene Gesamtplanung erforderlich (vgl. IWW, 2009).

Eine flussgebietsspezifische Betrachtung der effizientesten Auswahl von Maßnahmen an Kläranlagen zur Senkung der Belastungen durch trinkwasserrelevante Mikroschadstoffe der
Wasserwerke im Ruhreinzugsgebiet wurde im Rahmen einer vom MKULNV beauftragten Studie durch ISA/ IWW im Jahr 2008 vorgenommen (ISA Aachen und IWW Mülheim, 2008). Dabei
wurden die Schadstofffrachten der relevanten Einleitungsstellen im gesamten Ruhreinzugsgebiet im Hinblick auf die Belastungen der Ruhr im Bereich der Entnahmestellen berücksichtigt.

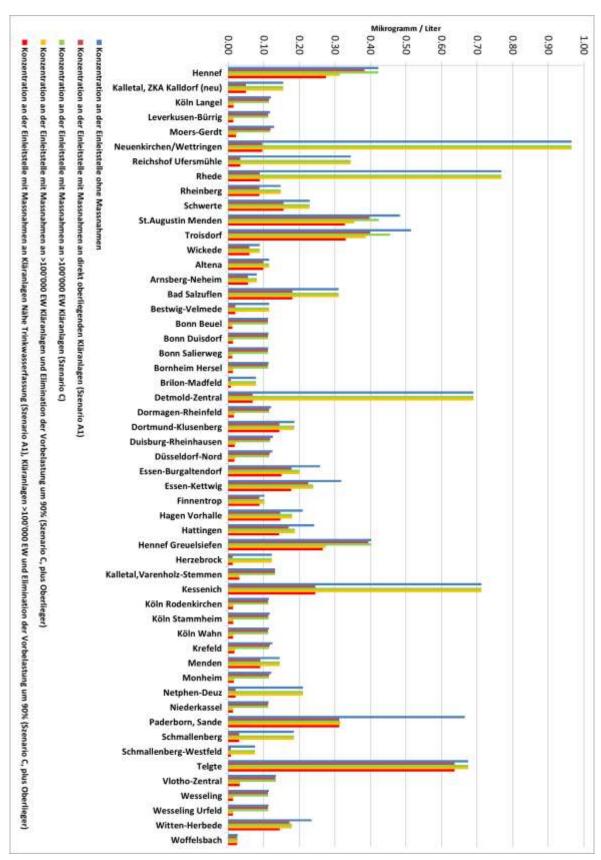


Abbildung 30: Optimierte Szenarienkombinationen für den Schutz der Trinkwasserressourcen. Konzentrationen von Carbamazepin an den Eileitstellen der Kläranlagen oberhalb von Trinkwasserfassungen (<10km Entfernung)

8. EMPFEHLUNGEN FÜR WEITERGEHENDE UNTERSUCHUNGEN UND MASSNAHMEN

8.1 Weitere Arbeiten am Stoffflussmodell NRW

8.1.1. Absicherung der Modellresultate und Ausweitung auf weitere Stoffe

Das Stoffflussmodell wurde im Rahmen dieser Arbeit für die Mikroschadstoffe Benzotriazol, Carbamazepin, Clarithromycin, Diclofenac, Metoprolol, Sotalol und Sulfamethoxazol überprüft. Für Benzotriazol, Carbamazepin, Diclofenac und Sotalol passen die Modellresultate sehr gut mit den aus Messwerten ermittelten Werten zusammen. Für Clarithromycin, Metoprolol und Sulfamethoxazol sind systematische Unterschiede zwischen Modellresultaten und Messwertbasierten Resultaten aufgetreten. Es konnte im Rahmen dieser Arbeit nicht für alle Stoffe geklärt werden aus welchen Gründen die Unterschiede zustande kamen. Eine vertiefte Untersuchung dieser Unterschiede und ggf. eine Ausweitung auf andere Mikroschadstoffe, für die eine Basis an Messwerten zur Modellüberprüfung vorhanden ist oder noch erhoben werden kann, wäre ein sinnvoller nächster Schritt.

Das Modell basiert auf landesweit erhobenen Daten und es konnte im Rahmen dieser Untersuchungen nicht auf einzelne Kläranlagen und Einleitstellen eingegangen werden. Im Weiteren wäre es sinnvoll die Resultate mit Experten aus Nordrhein-Westfalen anzuschauen und Einzelfälle zu identifizieren, die im Detail überprüft und ggf. korrigiert werden müssten. Auch sollten die verwendeten MNQ Daten nochmals überprüft und abgesichert werden.

Wenn die Daten bereinigt wurden und die auffälligen Einzelfälle mit Experten besprochen und gelöst wurden, können die IST-Berechnungen und die Szenarienanalysen angepasst wiederholt werden.

8.1.2. Zielorientierte Szenarienanalysen und Kosten-/Nutzen-Untersuchungen

Neben den vier hier vorgestellten Szenarien, könnten noch neue Szenarien definiert werden und deren Erfolg auf die Verminderung der Stoffflüsse und der Konzentrationen analysiert werden. Beispielsweise könnte eine kostengünstige Möglichkeit zur effizienten Verminderung der gesamten Stofffracht sein, dass die grössten Kläranlagen ausgebaut würden (>100'000 angeschlossene Einwohner), plus alle, welche eine Flockungsfiltration besitzen.

Eine sinnvolle Grösse, welche man mit dem Ansatz des Stoffflussmodells gut erheben kann wären die geschätzten Gesamtkosten für die verschiedenen Szenarien. Es kann dabei mit Kostenfunktionen gerechnet werden, welche von der Grösse der auszubauenden Kläranlagen abhängig sind. So könnten die verschiedenen Ausbaustrategien auch bezüglich der Kosten grob verglichen werden. Der Nutzen kann beispielsweise als Verringerung von Überschreitungen (Verringerung der Risikoquotienten) pro km Fliessgewässer gerechnet werden, als Reduktion der Gesamtfracht, als Reduktion an den wichtigsten Trinkwasserfassungen oder als

eine Kombination aus allen Kriterien. Wenn der so berechnete Nutzen mit den Kosten verglichen wird, könnte eine Nutzwertanalyse durchgeführt werden um die Szenarien miteinander zu vergleichen.

8.1.3. Vertiefte Analyse der trinkwasserrelevanten Gewässer

Mit einer Anpassung der Modellstruktur, könnten für unterschiedliche Einleitstellen resp. Gewässer verschiedene Qualitätskriterien definiert werden. Dies könnte insbesondere sinnvoll sein, wenn für trinkwasserrelevante Gewässer vorsorgliche Werte gelten sollen, für die anderen Gewässerabschnitte jedoch die ökotoxikologisch basierten Werte. Das Arbeiten mit zwei unterschiedlichen Kriterien könnte auf die Reduktionsszenarien einen Einfluss haben.

8.2 Ausweitung der Stoffflussmodellierung und benutzerfreundliche Umsetzung des Modells

Eine Ausweitung des Stoffflussmodells auf andere Bundesländer würde es ermöglichen innerhalb eines konsistenten und nachvollziehbaren Modellrahmens die Situationen in den verschiedenen Bundesländern zu vergleichen und den Handlungsbedarf bei Oberliegern systematisch zu ermitteln. Eine bundesweite Übersicht wäre beispielsweise notwendig um die kürzlich vom UBA bekräftigte Absicht, für besonders sensible Regionen weitergehende Verfahren für kommunale Kläranlagen einzuführen, zu konkretisieren (EUWID, 2011).

Die softwaretechnische Umsetzung des Stoffflussmodells in Zusammenarbeit mit Informatikern wäre für dieses Vorhaben sinnvoll, da das momentan verwendete Stoffflussmodell nicht bedienerfreundlich ist. Es wäre dabei eine Zusammenarbeit mit dem UBA (Deutschland) und dem BAFU (Schweiz) anzustreben.

8.3 Verknüpfung des Stoffflussmodells mit Screening und Biotests

8.3.1. Verknüpfung der Stoffflussanalyse mit Screening

Die Verknüpfung zwischen Modellierung und Analytik könnte für verschiedene Fragestellungen interessant sein. Folgende Fragestellung hat sich bei den bisherigen Vorüberlegungen als interessant herauskristallisiert:

An welchen Orten soll man messen um eine repräsentative Übersicht (als Eingangsdaten für die Stoffflussanalyse) zu erhalten, um dadurch den Messaufwand (für Routineuntersuchungen) zu reduzieren?

Dazu könnten auf Basis der Modellierungsergebnisse die im Gewässernetz vorhandenen Fließgewässerabschnitte mit besonders hohem Abwasseranteil und/oder im Einzugsbereich von Trinkwassergewinnungsanlagen ausgewählt werden. Dort kann zur Identifikation von weiteren relevanten Mikroschadstoffen ein non-target Screening (ca. 10 Punkte) durchgeführt werden.

8.3.2. Biotests

Die Erfassung der Wasserqualität hinsichtlich der ökotoxikologischen Wirkung mit Hilfe von Biotests ist für die Gewässerbeurteilung von grossem Interesse. Es wurden im Vorfeld schon verschiedene Möglichkeiten für ein Folgeprojekt besprochen, welches zur Abrundung und Ergänzung der erzielten Ergebnisse zusätzlich die wirkungsbasierte Erfassung von Mikroschadstoffen einbezieht. Einige kontinuierlich eingetragene Pharmazeutika, wie z.B. das hormonelle Kontrazeptivum 17-alpha-Ethinylestradiol wirken summarisch mit natürlichen Steroidhormonen und deren Metaboliten und Transformationsprodukten, aber auch mit anderen Industriechemikalien über den Wirkmechanismus der estrogenen Rezeptorbindung als Mischung zusammen. Es ist bekannt, dass diese Substanzen teilweise unterhalb eines ng/L schon als Einzelsubstanz eine ökotoxikologische Langzeitwirkung in Fischen bewirken können (Escher, et al., 2008; Kase, et al., 2011).

In Forschungsprojekten des MKULNV zeigen Analysenergebnisse, die im Rahmen des Teilprojektes 6 für das Projekt "Stoffflussmodellierung für Mikroschadstoffe aus kommunalen Kläranlagen" erarbeitet worden sind, dass ein Grossteil der estrogenen Substanzen derzeit weder im Zulauf noch im Ablauf von Kläranlagen mit den bisherigen analytischen Standardmethoden im Wirkungsbereich unterhalb 1 ng/L quantitativ bestimmt werden können.

Die Belastungssituation kann daher weder für die Einzelsubstanzen noch für die Mischung abgeschätzt werden und eine Kombination mit bioanalytischen Verfahren als Indikatoren für das Ausmass einer wirkspezifischen Belastungssituation oder zur integrativen Charakterisierung einer kläranalagenspezifischen Reinigungsleistung wäre deshalb anzustreben.

Es können mehrere integrative bioanalytische Verfahren wie bestimmte Yeast Estrogen Screen (YES) Biotests oder auch empfindlichere auf menschlichen Zelllinien basierte Verfahren wie der ER-Calux oder der T47D-kblu-C eingesetzt werden, um an den Estrogenrezeptor bindende Substanzen wie 17-alpha-Ethinylestradiol (EE2), 17-beta-Estradiol (E2), Estron (E1) und diverse andere anthropogen eingetragene Substanzen sicher nachzuweisen.

Die analytischen Standardverfahren sind für diese Substanzen teilweise auch für das Oberflächenwasser nicht ausreichend sensitiv, um die ökotoxikologischen Qualitätskriterien im Bereich von 35 pg/L bis 3,6 ng/L im Wasserkörper zu überwachen. Auch hier ist der Einsatz von ergänzenden wirkspezifischen Biotests als Screeningmethoden erstrebenswert, da diese integrativ Aufschluss über Belastungspotentiale geben können. Das Oekotoxzentrum ist in verschiedenen Projekten an dem Einsatz dieser Verfahren zum Gewässermonitoring, deren Validierung und internationalen Standardisierung beteiligt.

Die Ergebnisse aus einem Screening mit Biotestverfahren könnten ggf. in einem späteren Schritt in die flächendeckende Modellierung zur Abschätzung der Mischungswirkungen von verschiedenen Substanzen mit östrogenem Potential eingesetzt werden.

9. LITERATUR

Abegglen, Christian und Siegrist, Hansruedi. 2012. Mikroverunreinigungen aus kommunalem Abwasser - Verfahren zur weitergehenden Elimination auf Kläranlagen. Bern: Bundesamt für Umwelt, 2012. Umwelt-Wissen Nr. 1214: 210S.

Bergmann, Axel, Fohrmann, Reinhard und Weber, Frank-Andreas. 2011.

Zusammenstellung von Monitoring-daten zu Umweltkonzentrationen von Arzneimitteln. s.l.: Umweltbundesamt, 2011. http://www.uba.de/uba-info-medien/4188.html.

Documed AG. 2011. *Arzneimittelkompendium der Schweiz.* http://www.kompendium.ch : Basel, Switzerland, 2011.

Escher, **Beate**, **et al. 2008**. Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples. *J. Environ. Monit.* 2008, 612-621.

EUWID. 2011. Umweltbundesamt fordert für bestimmte Regionen die vierte Reinigungsstufe. *EUWID Wasser und Abwasser 40.2011.* 2011.

Expertenkommission Programm "Reine Ruhr" und MKULNV. 2012. Vom Programm "Reine Ruhr" zur Strategie einer nachhaltigen Verbesserung der Gewässer- und Trinkwasserqualität in Nordrhein-Westfalen, http://www.umwelt.nrw.de/umwelt/pdf/programm_reine_ruhr_2012.pdf. s.l.: Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz, 2012.

Fahlenkamp, Hans, et al. 2008. *Untersuchungen zum Eintrag und zur Elimination von gefährlichen Stoffen in Kläranlagen, Teil 3.* s.l.: Technische Universität Dortmund - im Auftrag vom Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz Nordrhein-Westfalen, 2008.

Gälli, René, Ort, Christoph und Schärer, Michael. 2009. Mikroverunreinigungen in den Gewässern. Publikation Umwelt-Wissen. Bern: Bundesamt für Umwelt (BAFU), 2009.

Götz, Christian, et al. 2010. *Mikroverunreinigungen - Beurteilung weitergehender Abwasserreinigungsverfahren anhand Indikatorsubstanzen.* s.l. : Gas, Wasser, Abwasser. GWA 4/2010, 2010.

Götz, Christian, et al. 2010. *Mikroverunreinigungen aus kommunalem Abwasser - Kombination von Expositions- und ökotoxikologischen Effektdaten.* s.l. : Gas, Wasser, Abwasser. GWA 7/2010, 2010.

Götz, Christian, Kase, Robert und Hollender, Juliane. 2011. Mikroverunreinigungen - Beurteilungskonzept für organische Spurenstoffe aus kommunalem Abwasser". Studie im Auftrag des BAFU. . Dübendorf : Eawag, 2011.

Grünebaum, T. 2011. Elimination von Arzneimitteln und organischen Spurenstoffen: Entwicklung von Konzeptionen und innovativen, kostengünstigen Reinigungsverfahren. *Elimination von Arzneimittelrückständen in kommunalen Kläranlagen.* Essen : Im Auftrag des MKUNLV, 2011.

Herbst, H. und Hilbig, R. 2012. *Machbarkeitsstudie: Einbindung einer Anlage zur Spurenstoffelimination mittels Aktivkohle in die Abwasserfiltration der Kläranlage Neuss Ost - Abschlussbericht.* s.l. : Hrsg. MKULNV, 2012.

Herbst, H., et al. 2011. Abwasserozonierung Kläranlage Duisburg-Vierlinden -Auslegung -Bau - erste Betriebsergebnisse, Tagungsband der 25. Karlsruher Flockungstage. Karlsruhe : Verlag Siedlungswasserwirtschaft, 2011.

Hirsch, R., et al. 1999. Occurrence of antibiotics in the aquatic environment. *Science of the Total Environment.* 1999, 225: 109-118.

Hollender, Juliane, McArdell, Christa und Escher, Beate. 2007. Mikroverunreinigungen aus der Siedlungsentwässerung in Gewässern der Schweiz: Vorkommen und Bewertung. *GWA*. 11, 843-852, 2007.

Internationale Kommission zum Schutz des Rheins (IKSR). 2010. Strategie Mikroverunreinigungen - Strategie für die Siedlungs- und Industrieabwässer. Koblenz : s.n., 2010.

Jargemann. 2011. Ergebnisse der großtechnischen Versuche zur Entfernung von Mikroverunreinigungen auf den Kläranlagen Bad Sassendorf und Duisburg-Vierlinden. Essen : Essener Tagung, 2011.

Kase, Robert, et al. 2011. Assessment of Micropollutants from Municipal Wastewater - Combination of Exposure and Ecotoxicological Effect Data for Switzerland - Book Chapter 2. s.l.: ISBN: 978-953-307-233-3, InTech, 2011.

Longrée, Philipp, et al. 2011. Organische Mikroverunreinigungen im Bodensee. *GWA*. 2011, 7/2011.

Merten, M. 2011. Spurenstoffelimination mittels Aktivkornkohle im Ablauf des Klärwerks Gütersloh-Putzhagen – FuE Konzeptstudie. s.l.: Hrsg. MKULNV, 2011.

Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen (MUNLV) . 2009. Entwicklung und Stand der Abwasserbeseitigung in Nordrhein-Westfalen (Stichtag der Daten: 31.12.2008). 40476 Düsseldorf: s.n., 2009.

MKULNV . **2011.** *Entwicklung und Stand der Abwasserbeseitigung in Nordrhein-Westfalen, http://www.umwelt.nrw.de/umwelt/pdf/abwasserbeseitigung_nrw.pdf*. 2011.

MKULNV. 2012. Flussgebiete in NRW - Gewässerschutz und ökologische Gewässerentwicklung in Nordrhein-Westfalen. [Online] 2012. http://www.flussgebiete.nrw.de/index.jsp. **Moschet, Christoph. 2010.** Georeferenced Mass Flux Modelling of Selected Micropollutants in the Catchment of Lake Constance. Dübendorf: Master-Thesis, Eawag, 2010.

Ort, Christoph, et al. 2007. Mikroverunreinigungen: Nationales Stoffflussmodell. *GWA*. 2007, Bd. 11/2007.

Ort, Christoph, Hollender, Juliane und Siegrist, Hansruedi. 2009. Model-Based Evaluation of Reduction Strategies for Micropollutants from Wastewater Treatment Plants in Complex River Networks. *Environmental Science and Technology.* 43(9), 2009, Bde. 3214-3220.

Pinnekamp, J. 2012. Ertüchtigung kommunaler Kläranlagen durch den Einsatz von Verfahren mit UV-Behandlung ("Mikrolight") (Phase 1) – FuE Abschlussbericht. s.l.: Hrsg. MKULNV, 2012.

Ruhrverband. 2009. *Ruhrgütebericht.* s.l. : Arbeitsgemeinschaft der Wasserwerke an der Ruhr und Ruhrverband, 2009.

—. **2010.** *Ruhrgütebericht.* s.l. : Arbeitsgemeinschaft der Wasserwerke an der Ruhr und Ruhrverband, 2010.

Türk, J., Schaefer, S. und Madzielewski, V. 2011. Volkswirtschaftlicher Nutzen der Ertüchtigung kommunaler Kläranlagen zur Elimination von organischen Spurenstoffen - Vorstellung der NRW-Projekte und erste Ergebnisse. *Neue Verfahren und Betriebsstrategien in der Abwasserbehandlung.* München: s.n., 2011. Bd. 86. Siedlungswasserwirtschaftliches Kolloquium.

Umweltbundesamt. 2003. Bewertung der Anwesenheit teil- oder nicht bewertbarer Stoffe im Trinkwasser aus gesundheitlicher Sicht. Empfehlungen des Umweltbundesamtes nach Anhörung der Trinkwasserkommission des Bundesministeriums für Gesundheit beim Umweltbundesamt. http://www.umwe. s.l.: Umweltbundesamt (UBA), 2003.

—. 2011. Maßnahmen zur Minderung des Eintrags von Humanarzneimitteln und ihrer Rückstände in das Rohwasser zur Trinkwasseraufbereitung - Empfehlung des Umweltbundesamtes vom 30.08.2011 nach Anhörung der Trinkwasserkommission des Bundesministeriums für Gesundheit . s.l.: Umweltbundesamt (UBA), 2011.

Zwickenpflug, Ben, et al. 2010. Abschlussbericht - Einsatz von Pulveraktivkohle zur Eliminmation von Mikroverunreinigungen aus kommunalem Abwasser. Dübendorf : Eawag, 2010.

Mikroschadstoffe aus kommunalem Abwa

ANHANG 1: MITTLERE ABWASSERMENGEN UND ABWASSERANTEILE

Im Stoffflussmodell werden mit einfachen Annahmen die Abwassermenge pro Kläranlage ($M_{Ab-wasser}$) und der Abwasseranteil im Vorfluter ($f_{Abwasser}$) berechnet:

$$M_{\text{Abwasser}} \left[\frac{\text{Liter}}{\text{Tag}} \right] = M_{\text{Abwasser pro Einw.}} \left[\frac{\text{Liter}}{\text{Einwohner-Tag}} \right] \cdot E[\text{Einwohner}]$$

$$f_{\text{Abwasser}} = \frac{M_{\text{Abwasser}} \left[\frac{\text{Liter}}{\text{Tag}} \right]}{MNQ \left[\frac{\text{Liter}}{\text{Tag}} \right]}$$

Es wird dabei pro angeschlossenem Einwohner eine konstante Abwassermenge ($M_{Abwas-ser pro Einw.}$) angenommen, welche sowohl einen Fremdwasser- als auch einen mittleren Niederschlagswasseranteil enthält. Dies ist eine starke Vereinfachung und kann im Einzelfall, vor allem bei einem grossen Industrieabwasseranteil einer Kläranlage, deutlich von der gemessenen Abwassermenge abweichen.

Für die stoffliche Belastung der betrachteten Mikroverunreinigungen, welche den Ursprung im häuslichen Abwasser haben, ist aber der so berechnete, mit den angeschlossenen natürlichen Einwohnern korrelierte, Abwasseranteil (inkl. Fremd- und Niederschlagswasser) entscheidend und nicht die Gesamtabwassermenge, welche auch den Industrieabwasseranteil enthält.

Die Berechnung des Abwasseranteils hat keinen Einfluss auf die im Modell berechneten Stoffkonzentrationen im Vorfluter, welche über die einwohnerspezifische Stofffracht und den mittleren Niedrigwasserabfluss (MNQ) berechnet werden (siehe oben).

Mit der Annahme einer konstanten Wassermenge pro Einwohner von 350 L/Tag (inkl. Fremdwasser und einem mittleren Industriewasseranteil) ergibt sich beim Vergleich mit den bei <u>Trockenwetter gemessenen Abwassermengen</u> (2010) eine gute Korrelation (R²=0.90, P<0.001) ohne eine systematische Abweichung auf die eine oder andere Seite (siehe Abbildung 3). Das heisst die Annahme einer konstanten Wassermenge pro Einwohner von 350 L/Tag (inkl. Fremdund Industriewasseranteil) scheint im Mittel für Nordrhein Westfalen gut zu passen. 90% der Punkte liegen innerhalb des Bereichs von einem Faktor 2. Zum Vergleich wurde im Projekt Micropoll für die Schweiz 400 L/Tag pro Einwohner angenommen (Ort, et al., 2007).

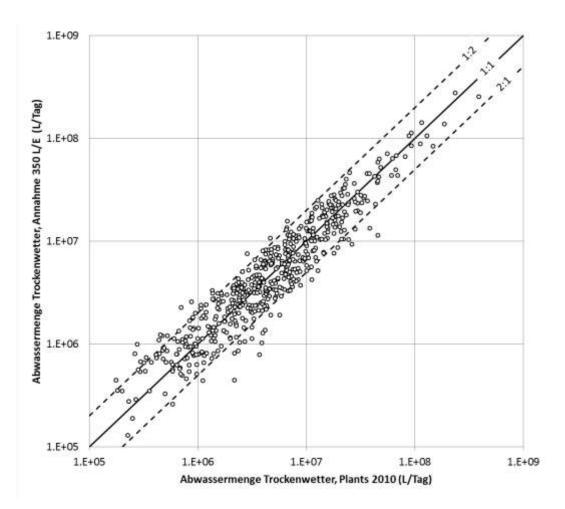


Abbildung 31: Vergleich der Abwassermengen bei Trockenwetter (Messdaten 2010) mit der Annahme einer konstanten mittleren Abwassermenge pro Einwohner (inkl. Fremdwasser und Niederschlagswasser) von 350 L/Tag.

Die Korrelation zwischen der gemessenen <u>Gesamtwassermenge</u> und einem konstanten mit den angeschlossenen Einwohnern korrelierten Wert von 380 Liter/Einwohner/Tag ist gut und es zeigt sich keine systematische Abweichung in die eine oder andere Richtung (R²=0.91, P<0.001). Der Vergleich ist in der Abbildung 32 dargestellt. Im unteren Bereich (kleinere Kläranlagen mit Abfluss unter 5•10⁶ L/Tag) ist die Streuung deutlich grösser.

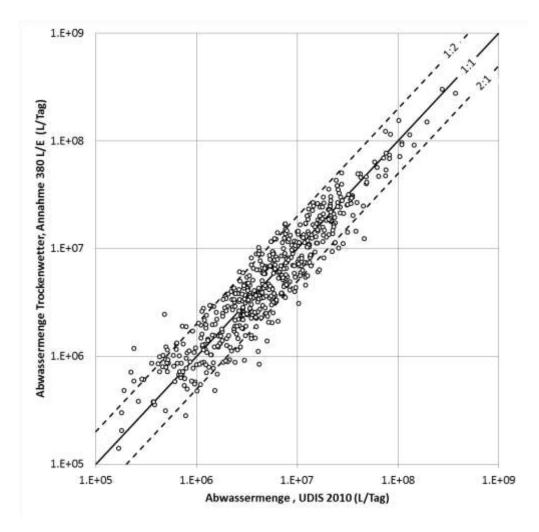


Abbildung 32: Vergleich der Gesamtabwassermengen mit der Annahme einer konstanten mittleren Abwassermenge pro Einwohner (inkl. Fremdwasser und Niederschlagswasser und Industrieanteil) von 380 L/Tag.

Welche Abwassermengen werden für welche Berechnungen verwendet?

Um den Abwasseranteil und den **kumulierten Abwasseranteil in den Vorflutern** zu berechnen, welcher ein Mass für die Belastung mit Mikroverunreinigungen aus kommunalem Abwasser darstellen soll, ist es sinnvoll, einen mit den angeschlossenen Einwohnern korrelierten konstanten Wert zu nehmen. Aufgrund der oben dargestellten Auswertungen wird dafür 350 Liter/Einwohner/Tag (häusliches Abwasser inkl. Fremd- und Niederschlagswasser) genommen. Für den Vergleich von gemessenen Konzentrationen mit aus Verbrauchszahlen hergeleiteten Konzentrationen im **Auslauf einer einzelnen Kläranlage** müssen die Gesamtwassermengen (Messdaten LANUV) verwendet werden. Für eine über alle Kläranlagen gemittelte Konzentration kann mit dem Mittelwert aus den gemessenen Gesamtwassermengen von 380 Liter/Einwohner/Tag gerechnet werden.

Mikroschadstoffe	aus kommuna	lem Ahwasser

ANHANG 2: MESSDATEN DER KONZENTRATIONEN IM ABWASSER

	Anlage		Düsseldorf-Süd	ort-Süd			Mönchengladbach GWK I	hachGWKI			Wuppertal-Buchenhofen	uchenhofen	
	Name		Düsseldorf-Süd K.A.	Süd K.A.		W	Mönchengladbach-Neuwerk GKW	-Neuwerk GKW	_		Buchenhofen K.A. (Wuppertal)	A. (Wuppertal)	
	Ang. Einw.		320'450	450			406'000	000			300'199	199	
	Datum	07.02.2012	21.02.2012	02.03.2012		30.01.2012	05.03.2012	12.03.2012		03.02.2012	07.02.2012	10.02.2012	
	Q [m 1/72h]	221'560.00	217'290.00	217'290.00		298'322.00	462'130.00	210'230.00		31'452.00)	330'306.00	
Trivialname	Stoff	Konz. [µg/l]	Konz. [µg/l]	Konz. [µg/l]	Mittelwert 1 - 1	Konz. [µg/l]	Konz. [µg/l]	Konz. [µg/l]	Mittelwert	Konz. [µg/l]	Konz. [µg/l]	Konz. [µg/l]	Mittel wert
4-Methylbenzotriazol	4098	nb.	n.b.	n.b.		n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	
5,6-Dimethylbenzotriazol	4100	<0.10	<0,10	<0,010		<0,010	<0,10	<0,10		<0,10	<0,10	<0,10	
5-Methylbenzotriazol	4099	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	
Acesulfam K	4153	7.20	2.00	27.00	12.07	27.00	37.00	34.00	32.67	17.00	17.00	18.00	17.33
Amidotrizoesaeure	2969	6.40	4.70	7.30	6.13	7.30	8.10	9.10	8.17	4.10	2.90	3.00	3.33
Benzotriazo	4097	9.60	9.00	8.90	9.17	8.90	11.00	10.00	9.97	5.50	6.50	6.70	6.23
Bezafibrat	2646	0.37	<0,10	0.56	0.47	0.56	0.64	0.60	0.60	0.53	0.54	0.54	0.54
Bisoprolol	2655	0.39	0.26	0.41	0.35	0.41	0.58	0.56	0.52	0.46	0.45	0.44	0.45
Carbamazepin	2667	1.20	1.10	0.90	1.07	06.0	1.30	1.20	1.13	0.52	1.10	0.92	0.85
Clarithromycin	2918	0.39	0.27	0.45	0.37	0.45	0.66	0.72	0.61	0.29	0.31	0.41	0.34
Clenbuterol	2680	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Clofibrinsaure	2332	<0,10	<0,10	0,10		<0,10	<0,10	<0,10	9	<0,10	0,10	0,10	2
Diazepam	2650	<0,10	<0,10	0,10		<0,10	0,10	<0,10		<0,10	<0,10	0,10	
Diclofenac	2639	1.90	1.60	1.50	1.67	1.50	2.00	2.10	1.87	1.40	1.50	1.20	1.37
Dihydrocodein	4005	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Erythromycin	2922	0.13	0.11	0.19	0.14	0.19	0.29	0.28	0.25	0.19	0.23	0.73	0.38
Fenofibrinsaure	2644	<0,10	<0,10	0.18	0.18	0.18	0.18	0.18	0.18	0.24	0.24	0.12	0.20
hiprofen	2637	6,10	60,10	6,5		60,10	0,10	0,10		6,10	0.16	A ,6	0.16
lomeprol	2968	3.60	4.00	3.50	3.70	3.50	14.00	15.00	10.83	34.00	25.00	29.00	29.33
lopamidol	2966	14.00	6.60	3.10	7.90	3.10	3.30	3.00	3.13	1.50	1.60	1.20	1.43
lopromid	2967	2.30	1.50	0.72	1.51	0.72	2.50	2.50	1.91	0.49	0.33	0.48	0.43
Metoprolol	2656	3.30	2.30	1.50	2.37	1.50	3.20	3.10	2.60	1.90	1.70	1.70	1.77
Nadolol	2657	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Naproxen	2641	<0,10	<0,10	0,10	2	<0,10	0.30	0.31	0.31	0.27	0.33	0.17	0.26
Phenazon	2647	<0.10	<0.10	<0.10	0.21	<0.10	0.27	0.27	0.25	<0.10	0.14	0.17	0.15
Propranolol	2658	<0,10	<0,10	40,10		<0,10	6,10	<0,10		<0,10	<0,10	<0,10	#DIV/0!
Propyphenazon	2972	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Roxythromycin	2930	0.32	0.27	0.19	0.26	0.19	na.	n.a.	0.19	0.21	0.26	0.26	0.24
Sotalol	2947	0.65	0.59	0.38	0.54	0.38	0.51	0.47	0.45	0.33	0.34	0.36	0.34
Sucralose	4142	1.80	1.90	0.96	1.55	0.96	1.60	1.60	1.39	1.00	1.10	1.10	1.07
Sulfadiazin	2948	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadimethoxin	2965	<0,10	<0,10	0,10		<0,10	0,10	<0,10		<0,10	0,10	0,10	
Sulfadimidin	2685	<0,10	<0,10	0,10		<0,10	0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadoxin	2964	<0,10	<0,10	0,10		<0,10	, A, 10	<0,10		<0,10	0,10	0,10	
Sulfamerazin	2963	<0,10	<0,10	<0,10	0.74	<0,10	0,10	<0,10	0.73	<0,10	<0,10	<0,10	0.60
Sulfamethoxazol	2691	0.83	0.73	0.66	0.74	0.66	0.80	0./3	0.73	0.//	0.64	0.63	0.68
Sulfathiazol		430	<0,10	40,10	90	<0,10	460,10	<0,10		<0,10	\$0,10	490,10	n
Summe 4- und 5-Methylbenzotriazol	-	4.30	3.00	4.10	3.80	4.10	4.80	4.50	4.40	5.20	5.30	4.80	5.10
Trimethoprim	2932	0.79	020	011	0.60	011	0.38	031	0 80	0.77	0.77	022	0.76
THIOGRAPHIA	2002	0.2.0	02.0	9.11	0.00	9.11	0.00	0.01	0.00	0.27	12.0	22.0	0.70

	Anlage		Neuss-Süd	-Sid			Bonn Bad Godesberg	odesberg			Köln Stammheim	nmheim	
	Name		Neuss-Süd K.A.	0d K.A.		elqV	Ablauf Filtration gem. Systemskizze		Pkt.	Hochwa	asserpumpwerk ;	Hochwasserpumpwerk ge. Systemskizze Pkt.	e Pkt.
	Ang. Einw.		70'490	90			83'489	89			788'273	273	
	Datum	30.01.2012	07.02.2012	14.02.2012		06.02.2012	24.02.2012	27.02.2012		06.02.2012	24.02.2012	27.02.2012	
	Q [m³/72h]	33'294.00	32'207.00	41'481.00		44'166.00	53'795.00	44'998.00		556'277.00	652'080.00	605'909.00	
Trivialname	Stoff	Konz. [µg/l]	Konz.[µg/l]	Konz. [µg/l]	Mittelwert	Konz. [µg/l]	Konz. [µg/l]	Konz.[µg/l]	Mittelwert	Konz. [µg/l]	Konz. [µg/l]	Konz. [µg/l]	Mittelwert
4-Methylbenzotriazol	4098	nb.	n.b.	n.b.		n.b.	nb.	n.b.		n.b.		n.b.	
5,6-Dimethylbenzotriazol	4100	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
5-Methylbenzotriazol	4099	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	
Acesulfam K	4153	70.00	66.00	58.00	64.67	30.00	28.00	30.00	29.33	66.00	39.00	39.00	48.00
Amidotrizoesaeure	2969	3.20	2.80	4.30	3.43	11.00	5.60	9.00	8.53	7.00	8.10	6.60	7.23
Atenolol	2946	0.32	0.38	0.36	0.35	0.34	0.28	0.27	0.30	0.62	0.60	0.61	0.61
Benzotriazol	4097	5.80	6.00	5.70	5.83	6.60	6.00	5.30	5.97	9.70	11.00	8.60	9.77
Bezafibrat	2646	0.44	0.54	0.63	0.54	0.60	0.49	0.38	0.49	0.18	0.29	0.28	0.25
Bisoprolol	2655	1.10	1.30	1.10	1.17	0.63	0.50	0.52	0.55	0.46	0.52	0.55	0.51
Carbamazepin	2667	1.40	1.30	1.10	1.27	1.10	1.00	1.10	1.07	0.93	0.80	0.90	0.88
Clarithromycin	2918	0.72	1.50	1.30	1.17	0.48	0.42	0.43	0.44	0.41	0.50	0.63	0.51
Clenbuterol	2680	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Clofibrinsäure	2332	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Codein	4006	0.14	0.18	0.18	0.17	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Diazepam	2650	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Diclofenac	2639	2.80	2.80	2.50	2.70	2.30	1.80	2.10	2.07	2.30	2.00	2.40	2.23
Dihydrocodein	4005	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Erythromycin	2922	0.24	0.23	0.23	0.23	0.22	0.13	0.13	0.16	0.27	0.28	0.27	0.27
Fenofibrinsäure	2644	0.28	0.38	0.42	0.36	0.46	0.29	0.26	0.34	0.15	0.24	0.22	0.20
Gemfibrozil	2642	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Ibuprofen	2637	0.14	0.25	0.24	0.21	<0,10	<0,10	<0,10		0.14	0.42	0.40	0.32
lomeprol	2968	3.40	4.30	3.80	3.83	16.00	17.00	10.00	14.33	5.50	13.00	11.00	9.83
lopamidol	2966	0.23	0.28	<0,050	0.26	1.10	1.70	2.10	1.63	2.50	4.00	3.10	3.20
lopromid	2967	3.70	2.80	3.00	3.17	1.30	3.50	1.80	2.20	0.78	2.00	1.50	1.43
Metoproloi	2656	2.80	2.90	2.50	2.73	2.40	1.90	2.10	2.13	2.20	2.20	2.40	2.27
Nadolol	2657	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Naproxen	2641	0.36	0.48	0.54	0.46	0.31	0.26	0.24	0.27	0.32	0.29	0.41	0.34
Oxazepam	4016	0.16	0.18	0.14	0.16	0.28	0.32	0.33	0.31	0.21	0.23	0.20	0.21
Phenazon	2647	0.11	<0,10	<0,10	0.11	<0,10	<0,10	<0,10		0.41	0.50	0.55	0.49
Propranolol	2658	<0,10	0.10	<0,10	0.10	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Propyphenazon	2972	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Roxythromycin	2930	<0,10	0.16	0.13	0.15	0.11	0.10	0.11	0.11	0.16	0.16	0.21	0.18
Sotalol	2947	1.30	1.40	1.10	1.27	0.95	0.70	0.73	0.79	0.59	0.49	0.55	0.54
Sucralose	4142	2.30	2.20	1.90	2.13	1.90	2.00	2.00	1.97	2.20	2.10	2.30	2.20
Sulfadiazin	2948	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadimethoxin	2965	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadimidin	2685	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadoxin	2964	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfamerazin	2963	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfamethoxazol	2691	0.62	0.90	0.73	0.75	08.0	0.45	0.40	0.55	0.80	0.73	0.80	0.78
Sulfathiazol	2962	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Summe 4- und 5-Methylbenzotriazol	4101	5.80	5.20	4.50	5.17	5.30	4.30	4.70	4.77	6.60	7.20	5.80	6.53
Temazepam	4017	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Trimethoprim	2932	0.37	0.52	0.45	0.45	0.34	0.20	0.18	0.24	0.18	0.20	0.20	0.19

	Anlage		Erftstadt	tadt			KA Bottrop	ttrop			Bad Lippspringe	pringe	
	Name	Ablau	f Nachklärung ge	Ablauf Nachklärung gem. Systemskizze Pkt	e Pkt	Probe	Probenahmeschacht im Ablauf der K	n Ablauf der Klä	(läranla		Pkt.PN gem. Systemskizze	ystemskizze	
	Ang. Einw.		49'735	35			726	765			15'58'	31	
	Datum	06.02.2012	24.02.2012	27.02.2012		23.01.2012	27.01.2012	30.01.2012		29.01.2012	13.02.2012	19.02.2012	
	G [m · l/ Zh]	28'218.00	33'106.00	29'932.00		1'146'391.00	1'095'276.00	1'100'995.00		-	0	۳	
Trivialname	Stoff	Konz. [µg/l]	Konz.[µg/l]	Konz. [µg/l]	Mittel wert	Konz. [µg/l]	Konz. [µg/l]	Konz. [µg/l]	Mittelwert				Mittelwert 8 -
4-Methylbenzotriazol	4098	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	
5,6-Dimethylbenzotriazol	4100	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
5-Methylbenzotriazol	4099	nb.	n.b.	n.b.		n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	
Acesufam K	4153	63.00	160.00	190.00	137.67	7.10	10.00	11.00	9.37	12.00	13.00	14.00	13.00
Amidotrizoesaeure	2969	3.00	2.20	2.10	2.43	1.10	2.00	2.10	1.73	0.69	1.00	0.55	0.75
Benzotriazo	4097	12.00	13.00	16.00	13.67	080	1.20	120	1.07	3.30	3.80	3.60	3.57
Bezafibrat	2646	0.50	0.81	0.26	0.52	0.23	0.37	0.48	0.36	0.18	0.25	0.29	0.24
Bisoprolol	2655	0.92	0.75	0.69	0.79	0.11	0.16	0.19	0.15	0.34	0.47	0.45	0.42
Carbamazepin	2667	0.77	0.66	0.74	0.72	0.22	0.34	0.38	0.31	0.43	0.65	0.53	0.54
Clarithromycin	2918	0.76	0.65	0.83	0.75	0.10	0.16	0.17	0.14	0.19	0.23	0.24	0.22
Clenbuterol	2680	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Clofibrinsäure	2332	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Codein	4006	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	0,10	0.12	0.12
Disclofense	2650	<0,10	<0,10	310	380	<0,10	0,10	<0,10	0.79	^0,10	4,10	40,10	100
Dihydrocodein	4005	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10		<0.10	0.10	<0.10	
Erythromycin	2922	0.20	0.18	0.21	0.20	<0,10	40,10	<0,10		<0,10	<0,10	<0,10	
Fenofibrinsäure	2644	0.22	0.13	0.12	0.16	<0,10	0.10	0.15	0.13	<0,10	0.11	<0,10	0.11
Gemfibrozil	2642	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Ibuprofen	2637	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		0.18	0.14	0.24	0.19
lonamido	29900	4.60	3 10	3 20.00	2 9 C	140	250	2.00	213	1.50	0.00	0.000	100
lopromid	2967	0.05	0.30	<0.050	0.18	0.29	0.73	0.92	0.65	<0.050	<0.050	0.07	0.07
Metoprolol	2656	1.70	1.50	1.40	1.53	0.80	1.20	1.50	1.17	1.20	1.50	1.50	1.40
Nadolol	2657	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Naproxen	2641	0.28	0.33	0.37	0.33	0.14	0.15	0.17	0.15	0.13	0.15	0.15	0.14
Oxazepam	4016	0.21	0.17	0.20	0.19	<0,10	0.12	0.14	0.13	0.16	0.20	0.18	0.18
Phenazon	2647	0.14	0.11	0.13	0.13	<0,10	<0,10	<0,10		<0,10	<0,10	0.12	0.12
Propranolol	2658	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Propyphenazon	2972	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Roxythromycin	2930	40,10	0.12	0.11	0.12	<0,10	40,10	<0,10		<0,10	0,10	<0,10	
Sotaloi	294/	0.58	0.49	0.56	0.54	0.18	0.27	0.28	0.24	0.55	0.65	0.64	0.61
Sulfadiazin	2948	\$0.10	\$0.10	\$0.10 ↑	1.50	<0.10	<0.10	\$0.10	0.44	<0.70	<0.91 0.91	<0.00	0.00
Sulfadimethoxin	2965	<0,10	<0,10	<0,10		<0,10	0,10	<0,10		<0,10	0,10	<0,10	
Sulfadimidin	2685	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadoxin	2964	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfamerazin	2963	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfamethoxazol	2691	0.52	0.46	0.65	0.54	0.18	0.26	0.28	0.24	0.36	0.34	0.53	0.41
Sulfathiazol	2962	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Summe 4- und 5-Methylbenzotriazol		4.60	4.30	4.60	4.50	4.40	6.10	6.70	5.73	2.60	2.80	2.90	2.77
Temazepam	4017	<0,10	<0,10	0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Trimethoprim	2932	0.44	0.35	0.38	0.39	<0,10	0.14	0.17	0.16	0.11	0.11	0.20	0.14

	Anlage		Bochum-Oelbachtal	elbachtal			Siegen-W	Siegen-Weidenau			Lippstadt	tadt	
	Name		Ablauf der Nachklärung	lachklärung		Unte	wasserschacht	Unterwasserschacht der MID im Ablaufm.	ufm.	Hochwa	Hochwasserpumpwerk vor der Men genmessun	or der Men genm	nessun
	Ang. Einw.		181'979	979			38'745	45			63'860	60	
	Datum	08.03.2012	12.03.2012	19.03.2012		23.01.2012	30.01.2012	20.02.2012		09.03.2012	16.03.2012	26.03.2012	
	Q [m 1/72h]	178'110.00	140'223.00	130'120.00		30'045.00	64'373.00	47'150.00		46'198.00	47'277.00	42'993.00	
Trivialname	Stoff	Konz. [µg/l]	Konz.[µg/l]	Konz. [µg/l]	Mittel wert	Konz. [µg/l]	Konz. [µg/l]	Konz.[µg/l]	Mittelwert	Konz. [µg/l]		Konz. [µg/l]	Mittelwert 1 4 1
4-Methylbenzotriazol	4098	n.b.	n.b.	n.b.		n.b.	nb.	n.b.		n.b.	_	n.b.	
5,6-Dimethylbenzotriazol	4100	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
5-Methylbenzotriazol	4099	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	
Acesulfam K	4153	21.00	32.00	32.00	28.33	2.70	10.00	12.00	8.23	24.00	29.00	33.00	28.67
Amidotrizoesaeure	2969	5.80	5.10	7.90	6.27	0.72	2.30	3.90	2.31	7.30	5.20	11.00	7.83
Atendiol	2946	0.70	0.85	0.76	0.77	<0,10	0.34	0.36	0.35	0.21	0.24	0.23	0.23
Benzotriazol	4097	5.50	6.00	5.70	5.73	1.10	4.20	5.30	3.53	5.70	6.30	6.00	6.00
Bezafibrat	2646	0.95	0.92	0.69	0.85	<0,10	0.39	0.56	0.48	0.80	0.70	0.51	0.67
Bisoprolol	2655	0.35	0.44	0.43	0.41	<0,10	0.28	0.36	0.32	0.56	0.63	0.63	0.61
Carbamazepin	2667	0.80	16.0	0.98	0.90	0.13	0.93	0.67	0.58	1.10	1.10	1.20	1.13
Clarithromycin	2918	0.34	05.0	0.57	0.47	<0,10	0.19	0.23	0.21	0.34	0.51	0.42	0.42
Clenbuterol	2680	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Clofibrinsäure	2332	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Codein	4006	0.15	0.23	0.20	0.19	<0,10	<0,10	<0,10		0.21	0.24	0.24	0.23
Diazepam	2650	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Diclofenac	2639	1.60	2.60	2.60	2.27	0.21	1.10	1.20	0.84	2.10	2.50	2.50	2.37
Dihydrocodein	4005	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Erythromycin	2922	0.17	0.26	0.27	0.23	<0,10	<0,10	<0,10		0.18	0.27	0.29	0.25
Fenofibrinsaure	2644	0.68	0.89	0.81	0.79	<0,10	0.31	0.40	0.36	0.25	0.30	0.17	0.24
Gemfibrozil	2642	<0,10	<0,10	<0,10		<0,10	<0,10	0.12	0.12	<0,10	<0,10	<0,10	
buprofen	2637	0.24	0.11	<0,10	0.18	<0,10	0.28	0.41	0.35	0.52	0.42	0.29	0.41
lonepio	2900	620	50.00	760	20.07	0.53	0.00	23.00	0.66	10.90	32.00	33.00	0.97
lopalliuoi	2000	0.20	1 20	1.00	4 37	0.00	0.50	C	0.00	0.00	24.00	20.00	21.07
Metoprolo	2656	3.50	4.50	4.70	4.23	0.39	1.90	2.30	1.53	1.90	2.20	2.30	2.13
Nadolol	2657	<0.10	<0.10	0,10		<0.10	<0,10	<0,10		<0.10	0,10	<0,10	
Naproxen	2641	0.39	0.46	0.41	0.42	<0,10	0.39	0.45	0.42	0.32	0.24	0.21	0.26
Oxazepam	4016	0.25	0.30	0.33	0.29	<0,10	0.19	0.20	0.20	0.23	0.26	0.27	0.25
Phenazon	2647	0.28	0.29	0.15	0.24	<0,10	<0,10	<0,10		0.16	0.15	0.17	0.16
Propranolol	2658	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Propyphenazon	2972	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Roxythromycin	2930	na.	n.a.	n.a.		<0,10	<0,10	<0,10		<0,10	<0,10	n.a.	
Sotalol	2947	0.53	0.67	0.63	0.61	<0,10	0.12	0.13	0.13	2.50	2.40	2.50	2.47
Sucralose	4142	1.40	2.10	2.20	1.90	<0,25	0.81	0.97	0.89	1.80	2.00	2.10	1.97
Sulfadiazin	2948	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadimethoxin	2965	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadimidin	2685	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfadoxin	2964	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfamerazin	2963	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Sulfamethoxazol	2691	0.87	1.10	1.10	1.02	0.25	0.75	0.69	0.56	1.00	1.10	1.10	1.07
Sulfathiazol	2962	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	<0,10	<0,10	
Summe 4- und 5-Methylbenzotriazol	4101	3.50	4.00	4.00	3.83	98.0	2.50	2.90	2.09	6.60	5.40	6.30	6.10
Temazepam	4017	<0,10	<0,10	<0,10		<0,10	<0,10	<0,10		<0,10	0.12	0.12	0.12
Trimethoprim	2932	0.33	0.39	0.37	0.36	<0,10	0.27	0.33	0.30	0.17	0.20	<0,10	0.19

	Anlago	Maretain	Maretain	Maretain	
	Name	Ablauf	Ablauf	Ablauf	
	Ang. Einw.	12'030			
	Datum	10.03.2012	16.03.2012	26.03.2012	
	Q [m³/72h]	25'409.00	24'720.00	23'137.00	
Trivialname	Stoff	Konz. [µg/l]	Konz. [µg/l]	Konz. [µg/l]	Mittel wert
4-Methylbenzotriazol	4098	nb.	n.b.	n.b.	
5,6-Dimethylbenzotriazol	4100	<0,10	<0,10	<0,10	
zotriazol	4099	n.b.	n.b.	n.b.	0.47
Amidotrizoesaeure	2969	130	380	330	207
Atenolol	2946	<0,10	<0,10	0,10	2.01
azol	4097	3.10	3.60	3.30	3.33
	2646	<0,10	<0,10	<0,10	
Bisoprolol	2655	0.18	0.18	0.17	0.18
Carbamazepin	2667	0.72	0.82	0.90	0.81
Clarithromycin	2918	0.45	0.40	0.27	0.37
	2680	<0,10	<0,10	<0,10	
nsäure	2332	0,10	6,10	0,10	
Diazepam	2650	<0,10	<0,10	<0,10	
Diclofenac	2639	0.81	0.94	0.95	0.90
Dihydrocodein	4005	<0,10	<0,10	<0,10	
Erythromycin	2922	<0,10	<0,10	<0,10	
Fenofibrinsaure	2644	<0,10	<0,10	<0,10	
Gemilorozii	2642	6,10	\$0,10	0,10	
lomenrol	2968	0.54	0.23	0.26	0.34
lopamidol	2966	0.18	<0,050	0.35	0.27
	2967	<0,050	0.62	0.21	0.42
Metoproloi	2656	0.58	0.66	0.62	0.62
Nadolol	2657	<0,10	<0,10	<0,10	
Naproxen	2641	0.15	0.18	0.16	0.16
	4016	0.30	0.32	0.32	0.31
Phenazon	2647	<0,10	<0,10	<0,10	
Propranolol	2658	<0,10	<0,10	0,10	
Propyphenazon	2972	0,10	6,6	0,10	
Sotalol	2947	0.20	0.25	0.21	0.22
80	4142	0.45	0.59	0.56	0.53
Sulfadiazin	2948	<0,10	<0,10	<0,10	
Sulfadimethoxin	2965	<0,10	<0,10	<0,10	
Sulfadimidin	2685	<0,10	<0,10	<0,10	
Sulfagoxin	2964	0,0	6,6	5,6	
Sulfamethoxazol	2691	0.62	0.65	0.45	0.57
Sulfathiazol	2962	<0,10	<0,10	<0,10	
Summe 4- und 5-Methylbenzotriazol	4101	2.00	1.90	1.60	1.83
Temazepam	4017	<0,10	<0,10	<0,10	
Trimethoprim	2932	0.16	0.15	0.13	0.15

0.36	0.12	4.36	<0.1	0.67	<0.1	<0.1	<0.1	<0.1	<0.1	1.41	0.67	0.18	<0.1	<0.1	0.19	0.22	0.29	<0.1	2.04	1.10	4.07	10.06	0.26	0.12	0.27	0.24	<0.1	1.76	<0.1	0.16	<0.1	<0.1	0.46	0.87	0.49	0.50	6.45	0.40	463	33.75	n.b.	<0.1	n.b.	Gesamtmittelwert über alle untersuchten Kläranlagen [µg/l]
0.22	0.00	1.41	n.b.	0.22	n.b.	n.b.	n.b.	n.b.	n.b.	0.59	0.59	0.06	n.b.	n.b.	0.13	0.06	0.10	n.b.	0.86	0.89	5.54	7.87	60.0	0.00	0.18	0.07	n.b.	89.0	n.b.	0.04	n.b.	n.b.	0.26	0.26	0.25	0.16	3.28	0.18	288	34.01	n.b.	n.b.	n.b.	Standardabweichung über alle untersuchten Kläranlagen [µg/l]
n.b.	0.12	2.22	n.b.	0.44	n.b.	n.b.	n.b.	n.b.	n.b.	0.59	0.22	0.11	n.b.	n.b.	0.11	0.15	0.15	n.b.	1.21	0.20	0.34	1.01	0.17	0.12	0.13	0.16	n.b.	0.85	n.b.	0.11	n.b.	n.b.	0.21	0.54	0.21	0.26	3.37	0.23	1 80	9.39	n.b.	n.b.	n.b.	10%-Perzentil über alle untersuchten Kläranlagen [µg/l]
n.b.	0.12	6.03	n.b.	0.97	n.b.	n.b.	n.b.	n.b.	n.b.	2.10	1.17	0.25	n.b.	n.b.	0.34	0.31	0.42	n.b.	2.71	2.14	7.59	19.40	0.37	0.12	0.36	0.30	n.b.	2.63	n.b.	0.21	n.b.	n.b.	0.72	1.13	0.75	0.66	9.93	0.65	810	61.33	n.b.	n.b.	n.b.	90%-Perzentil über alle untersuchten Kläranlagen [µg/l]

ANHANG 3: MESSDATEN IM GEWÄSSER – STOFFFRACHTEN UND KONZENTRATIONEN

WkSt Siid/Bad Honnef	WkSt Rhein-	Wese	W2 uh Havic	vor Mdg in Ems	vor Mdg in die Lippe	vor Mdg der Wörmke	Vlodrop(=Z3)	V2, vor Mdg	v Mdg in Werre (hf)	V MDG I D RUHR	uh. Freibad (NL)	uh Mutzbach	uh Mdg Rotbach	uh KA Warburg	uh KA Kirchlengern	uh KA Bad Oeynhausen	UH HATTINGEN	UH HARKORTSEE	Stuerzelberg	Str-Br in Au	Sf1 vor Vechte/ miin1	P Arm uh Amelium	Pegel Porta	PEGEL HO	Opladen	Mülheim-Kahlenberg	Menden	M2 uh Wöstebach	Lobith	Kohlfurther Brücke	in Troisdorf: Str-Br	Hattingen	Fröndenberg	Eppinghover.	Emscher-Mi	E 1a Juh KA	F 17a hei Finen - FU	DELYCEIN-AEVINCH	Bad Godesberg	AN DER LAI	AM PEGEL	(M 75) vor M	(L 14) in Lippborg	(A 50) vor M	
ad Honnef	WkSt Rhein-Nord Kleve-Bimmen		W2 uh Havichhorster Mühle/uh KA MS-Han. EU	ms :	e Lippe	Wörmke		V2, vor Mdg i d Steinfurter Aa	rre (hf)	CHR	NL)	uh Mutzbach oh. Mdg in Wupper	ach	gr	engern	Deynhausen	ΉZ	RTSEE			St1 vor Vechte/ miin1010 - FU	swist		PEGEL HOHENLIMBURG		lenberg		ebach		rinke	9tr-Br				ndung	Rheine-Nord - EU	nen - FII	EXNCH	erg	AN DER LANDESGRENZE	HASPE	(M 75) vor Mdg. in die Ruhr	borg	(A 50) vor Mdg. in die Lippe	Messstelle
																							_																						5,6-Dimethyl- benzotriazol
20	42 1	40		6	_		<u>_</u>		4	12	œ	7		_	6	9	4	5	13	9 .			c	17	29	43	26		13	c	n 0	, 14	: 4:	21	30	<u> </u>	2 6	3	13	5			19		Amidotrizoesaeu re
	_ !	2	2	ω			<u>-</u>	2	ω	6	CJI				2	7	_			ω.	7				17	16	2		2	7		c	4 0	6	24	7		_		13					Atenolol
							4	_		4							2				w			4												۱ د	4			O			2		Azithromycin
3	ν -	_								_										-			ــــــــــــــــــــــــــــــــــــــ		. 2	2	2					N	2		2	.	<u> </u>	s_				_	_		Benzotriazol
3	7	2	4	o			14	4	OI	16	9	_		_	2	7	4	_	_	ω.	7		c	ವ	23	29	13		9	7 0	ט ת	, 2	27	10	24	5 0	x	ח		16			Οī		Bezafibrat
ì	g :	27	25	ဆ	σı	00	ၽွ	17	28	37	26	7	21	12	36	30	9	7	16	20	<u>ب</u>	0 6	8 2	23	8	58	32	12	24	5 و	17	3 3	52	25	46	3 8	4 6	18	3 19	72	ഗ	_	20	19	Carbamazepin
	-	4	2	O)			9	2	OI	9	ω			_	4	6	2	_		4	i.			O	ı Gı	10	ω		-	1 00	0 N	د (. 0	_	9	טו מ	ກ			⇉			_		Clarithromycin
14	27	19	o	o			21	σı	O	19	⇉	⇉		_	6	00	6	_	o	12	3		2	8	20	28	18		6	7	3 0) (C	27	12	19	3 :	1 2	ភ	0	23			19		Diclofenac
٠.	_ (ת	2	ഗ			3	ω		CI	ω	_			2	4	2			ω.	7		c	ω	0	6	4		-	ກ		,	4		9	י וכי	7 -			o			4		Erythromycin
	ν -	7	_	2			2	_	2	4	_			_	_	σı	2		_	ი .				4	. 20	9	4				_	· N	0 00	2	20		4 -	_	_	19			2		Ibuprofen
<u>ب</u>	42 1	42		ഗ			<u>-</u>		σı	14	00	ω			6	9	4	σı	3	9			10	17	i 29	43	20		ವ		4 4	. 14	40	⇉	30	- 1	2 0	3	13	4			20		Iomeprol
	42 1			6					4	14	8	_								φ.				17					ವ	-	7 0				30					5			20		Iopamidol
	42			Ν.																7 .				17					3						30 2			3	13				14		Iopromid
	35																6			12			2	20							5 0	5 3			24 1					22 1			21		Metoprolol Naproxen
	25										51	1 7					,_			8				5 13	12					σ σ		<u> </u>			18 24					15 17			20		Sotalol
	26				_							7 3								6				3 10											4 24					7 18			0 15		Sulfamethoxazol
	» i			_						_					J.				_,						. 2								2		2										Summe 4- und 5- Methylbenzotria zol
		16	_				_			5					2	~				51					21	~				» -					24					13					Trimethoprim

WkSt Siid/Bad Honnef	WkSt Rhe	Wesel	W2 uh Ha	vor Mdg in Ems	vor Mda ir	vor Mda d	Vlodron(= 7.3)	V2. vor Mda i d Ste	v Mdg in V	V MDG I D RUHR	uh. Freibad (NL)	uh Mutzba	uh Mdg Rotbach	uh KA Warburg	uh KA Kir	uh KA Ba	UH HATTINGEN	UH HARKORTSEE	Stuerzelberg	SH vor Ve	R.Arm uh	Pegel Weilerswist	Pegel Porta	PEGEL H	Opladen	Mülheim-	Menden	Lopith	Kohlfurther Brücke	in Troisdorf; Str-Br	in Schötmar	Hattingen	Fröndenberg	Eppinghoven	E 1a uh I	E 17a bei	Düsseldorf-Flehe	BEI KLEI	Bad Godesberg	AN DER L	AM DEGE	(L 14) in Libboorg	(A 50) wor	Messstelle
d/Dad Dannet	WkSt Rhein-Nord Kleve-Bimmen	0	W2 uh Hawichhorster Mühle/uh KA MS-Han. EU	n Ems	vor Mda in die Lippe	vor Mda der Wörmke	73)	V2. vor Mdg i d Steinfurter Aa	Werre (hf)	D RUHR	ad (NL)	uh Mutzbach oh. Mdg in Wupper	totbach	arburg	uh KA Kirchlengern	uh KA Bad Oeynhausen	INGEN	ORTSEE	TC TC	Str vor Vechte/ mun1010 - EU	R.Arm uh Amelunxen	ilerswist	rta	PEGEL HOHENLIMBURG	q	Mülheim-Kahlenberg	os (ebacii	56 to book	er Brücke	of; Str-Br	nar		erg	ven Renicuis	1a uh KA Rheine-Nord - EU	E 17a bei Einen - EU	rf-Flehe	BEI KLEIN-VERNICH	esberg	AN DER LANDESGRENZE	AM DEGET HASDE	uppoorg	(A 50) vor Mdg. in die Lippe	Mittelweit wir Stollifacht (Nysain) Messstelle
																							1706																					5,6-Dimethyl- benzotriazol
10065	14'699	613		36	ω	í	8	٤	χ, ξ	20	39	17	i	42	14	366	491	365	13731	20			1'661	157	225	642	265	786.17		110	30	724	116	104	382	78	14'440		21'114	60		139	3	Amidotrizoe- saeure
2	1'364	i ۵	12				1 1	2 1	.	7	2				_	23	23		-	1 -					19	42	114	1418	9			51	12	13	31		1'130			ω.				Atenolol
						ē	й .	4	4	4							29			Ν.)			29											92	34				7		1	3	Azithromycin
32'600	27'085	540							6	68													1'299	218	354	717	364					626	184	0.147	1'057	236	21'277				4	Δ 4	0	Benzotriazol
1'462	2'223	22 1	Ν.	4		i	3 1	20	x 5	16	51		i	12	4	56	70	42	1541	3 12)		170	26	32	87	48	2.450	22	17	4	91	23	16	25.4	20	1'482		1'500	<u> </u>		22	3	Bezafibrat
2/1/2	3'890	137	တ	00 1	ν.	7	S .	4 4	ಳ ಕ	15	9	2	19	25	9	159	165	149	3717	8 0	1 0	œ	456	41	61	143	98 0	4562	43	26	12	138	3 i	32	124	50	3'434	9	3'124	200	ه د	лK	3 00	Carbamazepin
	2'498	20.	4	_		ā	<u></u>	ωι	u c	מט	4			⇉	ω	34	24	27	5	ž N)			20	5	57 5	51		1	4	σı	26	21	10	1 58	27				Φ.		23	3	Clarithromycin
2637	4'433	189	טח פ	10	2	1	<u>بر</u>	5 2	27	28	9	4	į	28	19	174	172	43	3'997	8 0	1		465	68	79	145	97	4717	57	44	13	121	47	42	165	62	3'773		4'899	35		49	5	Diclofenac
800'8	3'914	3 2	ν.	_		ē	лi	12	_ (9	ω				2	15	89		u	o 6	>		282	33	19	8 6	68		9		Сī		43	0	0 88	48	15'828			6		14/	1	Erythromycin
	5'360	78	4	2		ō	3 1	2 2	3 6	သ	ω			10	ا د	51	70		9921	8 12	,			36	39	105	139				ω	214	74	11	95 95	15	3'101		12'252	39		ū	5	Ibuprofen
19218	24709	904		œ		9	20	1	44	33	9	σı			36	1'506	810	1.0	21'324	2			2'143	216	416	1'074	135	3/933		26	00	1'602	165	52	120	225	21'195		17'127	23		133	3	Iomeprol
14'097	18'303	490	i	18 .	4	8	28	٤	J 6	သ္တ	19	ω		60	15	244	594	518	17'546	3 22	3		2'843	266	152	811	818	24.896		201	14	696	228	90	906	189	20'582		18'102	152		232	3	Iopamidol
9367	11'353	21188		4		ć	46	c	ם מ	ω.	7				2					000			570	165	54	235	65	91861	5	14		694	72	33	906		8'611		7'697			-	2	Iopromid
3/414	4779	268	⇒ :	17		1	44	7 5	46	39	15	4	:	ω_	24	308	244	85	3573	3 00			464	78	107	257	119	5 363	83	46	20	229	59	41	313	95	3'938		3'209	50		8	n	Metoprolol
	1'873	л 50 -	ا د	2			00 1	2 4	ט נו	00	2	_			2	29			ō	ň _				26	17	68 :	41		12				16	_∞ 5	40	9	2'255		2'042	10				Naproxen
1'947	2'590	121	2	ω		:	17	ωο	χο δ	15	4	_			6	133	යු	43	2'429	a a			206	26	47	114	57	30/8	29	46	7	118	32	23	3 92	30	2'119		2'346	00		49	5	Sotalol
1'931	2'400	87	4	ωι	2	i	10	2 2	7 0	9	O1	2	į	13	8	98	88	50	2'401	3 w			230	17	4	87	47	276	25	16	σı	65	20	19	4 83	21	1'961		1'862	12			2	Sulfa-methoxazol
	33'688								1	126														178	276	641	413					599			575						c	π 4	0	Summe 4- und 5- Methylbenzotriaz ol
	9	٠ يد	_	_			,	2 0		חני	N			49	2	25		19	1	2 6				13	18	္ဌာ :	17		12	4		36	12	& K	ς ω <u>μ</u>	13				6				Trimethoprim

WkSt Süd/Bad Honnef	WkSt Rhein-Nord Kleve-Bimmen	Wese	W2 uh Havichhorster Müh	vor Mdg in die Lippe	vor Mdg in die Linne	Vlodrop(=Z3)	V2, vor Mdg i d Steinfurter	vMdg in Werre (hf)	V MDG I D RUHR	uh. Freibad (NL)	uh Mutzbach oh. Mdg in Wupper	uh Mdg Rotbach	uh KA Warburg	uh KA Kirchlengem	uh KA Bad Oeynhausen	UH HATTINGEN	UH HARKORTSEE	Stuerzelbera	Str-Br in All	R. Arm uh Amelunxen	Pegel Weilerswist	Pegel Porta	PEGEL HOHENLIMBURG	Opladen	Mülheim-Kahlenberg	Menden	M2 iih Wästehach	Kohlfurther Brücke	in Troisdorf; Str-Br	in Schötmar	Hattingen	Fröndenberg	Eppinghoven	E 1a uh KA Rheine-Nord - EU	E 17a bei Einen - EU	Düsseldorf-Flehe	BEI KLEIN-VERNICH	Bad Godesberg	AN DER LANDESGRENZE	(M 75) vor Mdg. in die Ruhr	(L 14) in Lippborg	(A 50) vor Mdg. in die Lippe	Standardabweichung (Grundgesamtheit) von Stoff Messstelle
	Simmen		nle/uh KA MS-Han. EU				r Aa				Wupper									1			G											- EU				-		hr		pe	
																						0																					5,6- Dimethylbenzotri azol
מַלְּי	4/621	256	ū	3 0	>	106	3	15	œ	16	2		0	12	206	132	103	4749	η (>		824	41	86	337	116	7711	1	73	22	313	58	38	416	_	6'316		30'377	5		65		Amidotrizoesaeu re
0	0 6	ń i	12	>		21	2	_	σı	_				0	17	0			w _					10	17	80	10/	ĺω			21	4	4	5 15		0		c	ກ				Atenolol
						16	0		ω							8			_	_			15											0	6			c	תכ		_		Azithromycin
1	2'181	5							0													0	0	84	21	20					_	26	S	855 55 56 680	0	823				c	0		Benzotriazol
	561	48 1	2 -	_		16	2	CI	⇉	4	0		0	ω	బ్	56	0	0	14 -			58	15	19	27 (28	90/	2 10	7	ω	55	12	υ G	108	9	447		0 0	00		7		Bezafibrat
2	1000	57 .	7 4		<u>-</u> α	37	2	28	œ	ω	_	9	9	5	74	57	53	857	2 A	4.	. ω	277	<u> </u>	27	66	41 .	4049	15	9	O1	49	<u> </u>	သံ င်	75	28	820	4	754	5 0	0 0	33	O	Carbamazepin
-	o 5	1	ν -			13	;	2	4	2			0	4	မ	ζī,	0	4	<u> </u>	>			14	4	႘ !	24		œ	_	_	0	⇒ .	0 2	2 40	⇉			c	תכ		0		Clarithromycin
74.00	2688	113	O O	лС	>	54	. 4	15	25	٥.	2		0	17	126	224	0	2'021	20 1	,		405	87	37	111	59	2000	15	36	9	83	19	27	113	36	1'678	1	2625	23	+	23		Diclofenac
			ے د			22	S 01	0	6	_	0			_	<u> </u>	⇉		-	7 0	1		62	12	18	8 8	8		ω		_		37	ż	40 %	45	0		c	w	+	176		Erythromycin
			0 0	>		12	0	0	23	0			0	0	32	48	-	0	20 0				24	13	76	92	_			0		121	ω	420	0	0		0 6	بر ار		4		Ibuprofen
	10/298		O	ת		61	2	21	20	σı	2			34	1'542	464	192	9'432	84				110				06117							251 0			0	10'529	7		97		Iomeprol
200	12812	272		7 0	>	90	3	4	42	6	0		0	8	216	231	150	7'602	185	,		2'493	192	86	413	441	10707]	52	12	398	170	72	0 0	53	12788	:	8847	5		126		Iopamidol
A'477	5721	4506	c	>	-	76	}	0	0	ΟΊ			0	0	10	165	56	4456	4 0			380	71	5	139	34	9090	2	0		1'385	60	10	460		3793		4'481	+	-	205		Iopromid
11279	1'754	108	ဖ ဝ	ກ		62	7	14	18	51	_		0	14	187	147	0	1'285	ر 2	,		310	33	45	112	61	100/	36	17	6	105	19	15 15	198	38	1'140		1'120	26	+	18		Metoprolol
-	5	S .			-	000	0	2	6	_	0			0	18				n -	_			10	12	18 i	12		œ				ω	_ =	23	6	0		0 0	ס	+			Naproxen
825	890	40	2 -			21	2 2	2	7	_	0			ω	61	44	0	830	1 1			67	6	17	45	26	040	3 1	83	ω	57	3	ω 4	84	14	637	0	598	4	+	13		Sotalol
453	625	<u></u>	ωΝ	s c	5	14		0	4	2	_		0	7	62	49	0	818	22 1	,		125	6	20	26	8	000	1 1	œ	5	23	7	ω 6	3 S	6	537	č	543	תכ		7		Sulfamethoxazol
Caain	3'146	5							0														0	26	o (10					36	2	9	197 4'679	0	1'354				c	0		Summe 4- und 5- Methylbenzotria zol
	Ī	13	0 0			7	0	0	2	_			0	0	16		0		n –				4	10	9	0		4	0		10	ω	0 6	3 6	0				4				Trimethoprim

ANHANG 4: FESTLEGUNG DER QUALITÄTSZIELE MIT BLICK AUF DIE ÖKOLOGISCHE / ÖKOTOXIKOLOGISCHE GEWÄSSERGÜTE

Festlegung der Qualitätsziele mit Blick auf die ökologische / ökotoxikologische Gewässergüte:

1. Es gelten die Umweltqualitätsnormen gemäss Oberflächengewässerverordnung (OGewV) und Wasserrahmenrichtlinie (WRRL), die gemäss Umweltqualitätsnorm (UQN)-Richtlinie für das Schutzgut aquatische Lebensgemeinschaften ökotoxikologisch abgeleitet sind.

Falls diese nicht vorhanden sind:

 Ersatzweise gelten die auf EU-Ebene bzw. in Deutschland. konsentierten UQN-Vorschläge der EU-Kommission des Umweltbundesamtes (UBA) oder des Expertenkreises Stoffe der Länder-Arbeitsgemeinschaft Wasser (LAWA). Für weitere Stoffe gilt ergänzend die Bewertung des Oekotoxzentrums (CH).

Falls diese nicht vorhanden sind:

- 3a) Für die Arzneistoffe, zu denen dennoch kein ökotoxikologisch abgeleitetes Qualitätsziel vorliegt, wird pauschal der Wert 0,1 μg/L für die gewässerseitige Bewertung festgelegt (ökologischer/ökotoxikologischer Präventivwert, ähnlich wie für andere biologisch Wirkstoffe z.B. PBSM). Dieser Wert steht im Einklang mit den generellen Anforderungswerten aus dem Rhein, Donau, Maas-Memorandum 2008 und dem GOW-Konzept des UBA.
- 3b) Für Industriechemikalien und sonstige anthropogene Spurenstoffe (außer Arzneistoffe, Biozide, PBSM), zu denen noch kein ökotoxikologisch abgeleitetes Qualitätsziel vorliegt, wird pauschal auf 10 µg/L begrenzt (ökologischer/ökotoxikologischer Präventivwert!).

Falls dieser vorhanden ist, aber > 10 μ g/L:

Für Arzneistoffe inkl. Röntgenkontrastmittel (iRKM), zu denen ein ökotoxikologisch abgeleitetes Qualitätsziel vorliegt, das größer ist als 10 μg/L, wird das ökotoxikologisches. Qualitätsziel auf 10 μg/L begrenzt (Präventivwert.)

Für Industriechemikalien (auch Süßstoffe o.ä.) wird ebenfalls auf 10 µg/L begrenzt (Präventivwert).

Festlegung der Qualitätsziele in Einzugsgebieten von Trinkwassergewinnungsanlagen:

Arzneistoffe inkl. Röntgenkontrastmittel (RKM):

Grundsätzlich gilt der allgemeine Vorsorgewert (VWa) von 0,1 μ g/L (gemäß UBA, 2011). Es sei denn, ein niedrigerer gesundheitlicher Orientierungswert (GOW) oder gesundheitlicher Leitwert (LW) <0,1 μ g/L liegt vor, dann gilt der niedrigere Wert. Dabei ist ggf. die Summenbewertung in Anlehnung an TRGS 403 vorzunehmen (Quotientensummenregel für die Bewertung von gleichzeitig anwesenden Stoffen aus Gruppen mit ähnlicher Wirkung).

Liegt ein ökotoxikologisch abgeleitetes, wirkungsbasiertes Qualitätsziel vor, das niedriger ist als der VWa oder GOW, wird das niedrigere Qualitätsziel verwendet.

Industriechemikalien und andere anthropogene, synthetische Spurenstoffe (z.B. auch Süßstoffe):

Es gilt der toxikologisch abgeleiteter LW (gemäß WHO 1998, UBA 2001), maximal jedoch 10 μ g/L (VWs). (Grund für VWs: allg., auch ästhet. Reinheitsanforderung für Trinkwasser u Ressourcen).

Wenn kein toxikologisch abgeleiteter Wert vorhanden ist kommt es zur Anwendung des GOW-Prinzips gemäß UBA 2003 oder QSAR (in der Regel 0,01 bis maximal 10 μ g/L).

Wenn noch keine Einstufung vorliegt, wird der GOW1 (VWa) 0,1 µg/L verwendet.

Liegt ein ökotoxikologisch abgeleitetes, wirkungsbasiertes Qualitätsziel vor, das niedriger ist als der VWa oder GOW, wird das niedrigere Qualitätsziel verwendet.

Risikoquotienten werden nur aus den wirkungsbasierten Qualitätszielen gebildet. Bei Präventivwerten oder trinkwasserspezifischen Vorsorgewerten werden keine Risikoquotienten dargestellt – es erfolgt nur ein Vergleich. Werte, die über dem PV oder VW liegen, werden als Überschreitungen dargestellt.

Mikroschadstoffe	aus kommuna	lem Ahwasser

ANHANG 5: MODELLIERTE KONZENTRATIONEN (IST-ZUSTAND)

			angeschi,	RRVQ (Lis) (kernighert rell Abwessermungs, falls ZAbwesser >	Benzotriazzi	Carbamarecin	Clarithromycin	Dictofenac	Metaproial	Sotaloi	Sulfo- methosasol
KA NUMBER	Klänaniagen-IGUES-Name	Vorfluter	Einwohner	M040) (L/4)	[Jest]	[hin]	legt)	[µg/L]	[µg1.]	(ligh)	(upt.)
	Aschen-Soers	Wern	1947250	1736	6.85	0.62	9.25	0.73	1.44	0.43	0.52
	Elendorf	Hastvich	29/453	181	7.32	0.51	0.21	0.00	1.19	0.36	0.43
	Auchen-Horbach	Arrestach	15755 22'833	75. 160	9,48 9,20	0.66	0.27 0.26	0.76	1.54	0.46	0.55
	Aachen-Súd Akstori-Brochtal	Indo Brocher Bach	19557	140	13.60	0.05	130	1.12	2.27	0.67	0.61
	Between	Freuithethovener Fließ.	24924	49	22.50	1.59	0.88	1.88	170	1.12	1.39
	Settorich	Cereorsweller Fleis	32929	E7	17.00	1.18	0.48	1.40	2.76	0.63	1.01
	Eschweiter-Wessweiter-ZKA	Inde	67470	129	9.86	0.60	0.28	0.81	1.60	0.46	0.58
3	Harzageniath-Warra	Warn	21530	1'436	9.57	0.67	0.27	0.79	1.55	0.47	0.57
4	Sterman	Worth	18314	1'240	6.77	0.61	0.25	0.72	1.42	0.43	0.52
7	Konzen	Lautenbach	6675	£7	4.51	0.31	0.13	0.37	0.73	0.22	0.27
	Monachia	Ret	4'461	313	6.62	0.46	0.19	0.56	1.67	0.32	0.39
	Kallerherberg	Rur	2432	201	4.57	0.32	0.13	8.38	0.74	0.22	0.27
0	Martinally	Vichtbach	2032	73	5.29	0.37	0.15	0.44	0.86	0.26	0.31
1	Rowtgen	Vichtback	8'601	40	738	0.51	5.21	8.61	1.20	0.36	0.44
2	Breute	Ret	1'399	1'432	1.49	0.10	0.04	0.12	0.24	0.07	0.09
	Woffelsbach	Har .	2863	5872	0.39	0.03	0.01	0.03	0.06	0.02	0:02
6	Smirwrath	Kall	11151	51	9.76	0.68	0.26	9.81	1.59	0.46	0.58
5	Sharturt	India	51234	484	8.60	0.60	0.24	0.71	1.42	0.42	0.51
1	Winselon-Eachen	Eachener Bedri	26746	48	34.09	1.74	0.71	2.06	4.06	1.22	1.48
3	Aldenhosen	Merzbach	8'551	77	4.99	0.35	0.14	0.41	0.81	0.24	0.30
6	Dánen	Rur	123'364	6924	1.57	0.11	0.04	0.13	0.25	9.08	0.09
ê	Heimbech	Ref	2306	6'216	0.73	0.05	0.02	0.06	0.12	0.04	0.04
2	Hausen-Blens	Rui	535	6175	0.74	0.05	0.02	0.08	0.12	0.04	0.04
1	Hürtgerweit-Gey	Birgolor Bach	3'243	14	10.16	0.71	0.29	0.84	1.85	0.50	0.60
4	Schophoven	Bar	900	6144	1.81	0.13	0.05	0.15	0.29	5.09	031
6	Jülch	Rat	29/509	8'547	2.35	0.16	0,07	0.19	0.38	-0.12	0.14
4	Langenwhe	Wehsbach	10/020	103	4.38	0.30	0.12	0.36	0.71	0.21	0.26
ě	Litrich	Rut	13968	9'516	2.38	0.17	0.07	0.20	0.39	0.12	0.14
3	Schrid	Sollerbech	3191	18	8.19	0.57	0.23	0.68	1.33	0.40	0.49
4	Nideggen-Emblus	Nefirbach	3834	30	5.77	0.40	0.16	0.48	0.94	0.28	0.34
6	Wadhasen	Rai	4790	7190	1.54	0.11	0.04	0.13	0.25	90.0	0.09
é	Hambach	Elebach	9863	36	12.33	0.86	0.36	1.02	2.00	0.60	0.73
0	Noevenich	Neffitach	11941	156	8.03	0.59	0.23	0.66	1.30	0.30	0.48
2	Wissersheim	Wissersholmer Fließ	2466	311	9.75	0.68	0.28	0.80	1.58	9.48	0.58
3	Horspessite	Malafinibach	6'460	86	3.37	0.23	0.10	0.28	0.55	0.17	0.20
4	Raadingee	Finkelbach	2038	48	1.92	0.13	0.06	0.16	0.31	0.09	0.11
5	Votiverso	Marshaimer Graben	2/260	21	4.83	0.34	0.14	0.40	0.78	9.24	0.29
7	Frothern	Elemengraben	966	19-	2.28	0.16	0.06	0.19	0.37	0.11	0.14
8	Soller (1)	Ketterheimer Graben	938	2	19.36	1.35	0.66	1.60	3.14	0.95	1.15
9	Bad Muenstereitst-Kimpen Mia	En	11456	115	5.01	0.35	0.14	0.41	0.81	0.25	0.30
0	Notice Gladorf	Notherler Bach	760	3	1.19	0.08	0.08 0.66	0.10	0.19	0,06 0.96	0.07
6	Wat. Barkamon	Elfatsberger Bacty Abr	1'367	25	E.44	0.45	0.56	1.60	3.15 1.05	0.32	1:15
re o				18	3.21	0.22	0.09	0.26	0.52	0.16	0.19
16	Freilinges Alvoorf	Milhlenbech Alteach	1'201	190	0.11	0.22	0.00	0.01	0.02	0.10	0.01
0	Arturis	Abi	947	400	0.82	0.06	0.02	0.07	0.13	0.04	0.05
00	Reetz	Reetser Bach	388	2	10.37	0.72	5.29	0.86	1.88	0.51	8.61
101	Huangersdorf	Barbach	933	4	9.43	0.66	0.27	0.78	1.53	0.48	0.56
82	Nomerbach	Nomenbady	92	6	0.65	0.05	0.02	0.05	0.11	0.00	0.04
0)	Roly	Amuthdrach	525	81	0.29	0.02	0.01	0.02	0.05	0.01	0.02
04	Waterf-Assetorf	Scheebach	537	1	19.47	1.36	0.55	1.61	3.16	0.96	1.15
Di	Kronenburg	Kyli	2423	90	1.20	0.08	0.03	0.10	0.20	0.06	0.07
07	Dahlary	Glastibach	3/000	30	4.56	0.32	0.13	0.38	0.74	0.22	0.27
08	Kessonich	Erit	64927	388	10.25	0.71	0.29	0.86	1.66	0.50	0.91
12	Kall	Lint	7136	58	7.31	0.51	0.21	0.60	1.19	0.36	0.43
18	Modramich-Glahri	Robert	226	21	4.87	0.34	0.14	0.40	0.79	0.24	0.29
19	Medverrich	Veybech	11242	249	2.03	0.14	0.06	0.17	0.33	0.10	0.12
21	Flossforf	Bergbach	1101	6	9.51	0.66	0.27	0.76	1.54	0.47	0.96
23	Marriages	Gliesbash	2082	15	6.06	0.42	0.17	0.50	0.96	0.30	0.36
24	Posch	Eschweler Bach	584	11	2.02	0.54	0.06	0.17	0.33	9.10	0.12
27	Schleiden-Gemünd	Urit	6701	904	238	0.17	0.07	0.20	0.39	9.12	0.14
28	Schleiden	OW	15'200	745	1.52	0.11	0.04	0.13	0.25	0.07	0.09
29	Wellerswist, Auf der Hodyfahrt	Erf	15959	419	11.20	0.78	532	0.92	1.82	0.55	0.06
30	Buenerick.	Viatorior Bach	11040	27	1.70	0.12	0.06	0.14	0.28	0.06	0.10
32	Duerschoven	Breitach	1'082	68	8.59	0.60	0.24	0.71	1.39	0.42	0.51
33	Besserick	Neffebach	8906	16	6.19	0.43	0.18	0.51	1.01	5.30	0.37
37	Erkelenz-Witte	Beacitoact	38106	18	18.24	1.27	0.52	1.50	296	0.89	1,08
42	Kunditoren	Kückhover Fließ	2600	6	23.36	1.63	0.66	1.93	1.79	1.14	1.38
44	Flohstrate	Wum	28'296	1'893	9.29	0.65	0.26	0.77	1.01	0.45	0.55
46	Kirchhoyes	Flulglabori	33957	178	8.57	0.63	0.24	0.71	1.39	0.42	0.51
48	Dierarrieo (1)	Wurth	7120	2128	9.06	0.63	5.26	0.75	1.47	0.44	0.54
49	Hickeltoves Rations	Mühlenbach Ratheim	39/596	88	20.18	1.43	0.57	1.66	3.28	0.99	1.20
53	Freedory	Wate	30567	1908	8.50	0.59	0.24	0.70	1.38	0.42	0.50
54	Hapron	Kitschbody	9272	58	7.01	0.49	0.20	0.58	1.14	9.34	0.42
55	Waserberg	Gosthaurbach	17196	1737	12722	3310	2019	19315	2775	500	233
96	Wegborg-Mitta	Schweim	22'405	169	15,53	1.08	0.44	1.28	2.52	0.76	0.92
99	Arsbeck	Helpersteiner Bach	6570	21	14.01	0.98	0.40	1.16	2.28	0.68	0.83
60	Houverall	Sahrbach	11328	21	2.78	0.19	0.08	0.23	0.45	0.14	0.16
Ef	Obergartzen-Enzen	Bieltach	12061	54	8.47	0.58	8.24	0.70	1.37	0.41	0.50
64	Buchholzbedt	Buchhelzbach	2193	32	3.13	0.22	0.09	0.26	0.51	0.15	0.19
65	Urit Nettersholm	Urt	6760	49	8.09	0.56	0.23	0.67	131	0.40	0.48
96	Haus Bollheim	Reteatr	33	116	1.72	0.12	0.06	0.14	0.28	9.08	0.10
01	Biolofeid, Hosper	Wellbach	B1000	411	8.84	0.62	0.25	0.73	1.44	0.43	0.52
02	Biolofeid, Stake	Aa	100'500	1'184.	12.06	0.70	0.29	0.03	1.63	0.49	0.60
09	Belefeld, Sennestadt	Dalkebach	17900	34	14.23	0.99	0.40	1.17	231	0.70	0.84
15	Sistersion, Purchages	Dalkeboth	80'000	317	14.48	3.41	0.41	1.19	2.35	0.71	0.86
16	Abvasserverband Obere Lutter	Lister	73/000	249	13:18	0.92	8.37	1.09	2.14	0.65	0.78
19	Halle, Brandheide	Rhedatr Bach	7294	33	9.79	0.68	0.26	0.81	1.59	0.46	0.58
21	Halle, Hörste	Rathebach	1'261	6	8.85	0.62	0.25	0.73	1.44	0.43	0.52
22	Halle, Künsebeck	Känsebecker Barti	10/982	31	9.66	0.67	0.27	0.80	1.57	0.47	0.57
24	Harsewinkel	Atrooksbach	22/937	18T	9.98	0.69	0.26	0.02	1.62	0.49	0.59

		10000000	angeschi.	MPQ (Lis) (corrigiest rest Abwasser mange, falls (Abwasser >	Benzotriazol		Clarkthromysin		Metoprotol	Setulol	Bulta- mothoxaes
A NUMBER 26	Killrantagen-FBUES-Namo Herzebrock	Vorflutor Erra	Einwohner 15580	MMQ) (LA)	[pg1] 1.76	Bast3 0.12	0.05	0.15	[pgC] 0.29	0.00	[pgfL] 0:10
7	Largerberg	Fortiach	7614	31	11.07	0.12	0.31	0.91	180	0.54	0.66
9	Rhoda Wederbrick, Rhoda	Ems	46977	392	11.43	0.60	0.32	0.94	1.86	0.56	0.68
3	Reterg	Eva.	30/332	270	7.51	0.52	0,21	0.62	1.22	0.37	0.45
4	Schioli Hote Stakenbrock	Wapelbach	22700	57	11.74	0.62	0.33	0.97	1.91	0.57	9.70
6	Steidlagen	Abrooksbach	17900	82	9.83	0.68	0.28	0.81	1.60	-0,48	0.58
7	Vori-West	After Olborn	21993	132	7,46	0.52	0.21	0.61	1.21	0.37	5.44
8	Wort, Sende	Landerbedti	16/900	101	7.38	0.61	0.21	0.61	1.20	0.36	0.44
B.	Versinold	N.N.	21799		200	192	1000	- C	4.46	6.00	700.0
6 (7	Wether, Arrode-Schwarztach	Schwatztach Warmenau	5800	33	795	0.58	0.23	0.66	129	0.39	0.47
8	Werthor, Warnienau Werthor, Theenhausen	Heighach	4750 800	29 6	7.79 6.84	0.54	0.22	0.64	1.11	0.38 0.34	0.41
0.	Bad Orburg, Herste	Aa	22729	179	5.59	0.38	0.16	0.46	0.91	0.27	0.33
2	Boverungen Deltasson	Bever	3'200	100	2.41	0.17	0.07	0.20	0.39	0.12	0.14
53	Beverungen, Osterfold	4	14'300	44'993	1.99	0.14	0.06	0.16	0.32	0.10	0.12
4	Borgentraich, Borghalz	Jordan	2187	36	2.82	0.29	0.08	0.23	0.46	0.14	0.17
8	Borgantisich, Alstertal	Aster	1'859	15	5.72	0.40	0.16	0.47	0.93	0.28	0.34
9	Brakel, Brakeler Märsch	Bruckt	12398	284	2.73	0.19	0.08	0.23	0.44	0.13	0:16
90	Brakel, Hembsen	Note	1'873	1'157	1.95	0.14	0.00	0.16	0.32	0:10	0.12
i)	Brakol, Belletsen	Bruckt	1'442	90	2.40	0.17	0.07	0.20	0.39	0.12	9.14
4	Höxdor	4	18/850	46902	1.99	0.14	0.06	0.16	0.32	0.10	0.12
18	Höxler: Othergen	Nette	2'266	1'422	1.66	0.12	0.05	0.14	0.27	-0:08	0.10
8	Manenmänster, Löwendorf-Sauner	Saumer Bach	250	3	4.07	0.28	0.12	0.34	0.66	0,20	0.24
0	Morenmanutar, Várdes	Brucht	3450	26	6.00	0.42	0.17	0.40	0.97	0.29	0.36
0	Markeynürster, Bredenborn	Beberbach	1'520	20	3.40	0.24	0.10	0.28	0.55	0.17	0.20
1	Naheirs Sonnersell	Kleisenbredener Bach	920	43	0.96	0.07	0.03	0.08	0.16	0.05	9,06
2	Numers	Emmer	6970	380	1.00	0.67	0.03	0.09	0.16	0.06	0.08
74	Stainhoire	Enrige	14'451	910	1.99	0.12	0.05	0.14	0.27	0.08	9.10
75	Waturg	Diemol	22518	3'228	1.72	0.12	0.05	0.14	0.28	0.08	0.10
Pt .	Watturg Desetturg -NEU-	Eggil	8771	118	2,62	0.18	0.07	0.22	0.43	0.13	0.16
3	Wilebadeseen	Nete	3026	177	0.77	0.66	0.02	0.06	0.12	0.04	8.06
4	Willobadeseen, Niesen	Neke	6827	305	1.30	0.00	0.04	0.11	0.21	0.06	80,6
55	Alterboken, Schwaney	Elerback	41076	68	2,67	0.19	0.08	0.22	0.43	0.13	0,16
17	Alterboken	Bake	\$177	333	0.70	0.05	0.02	0.06	.035	0.03	0.04
8	Bad Lippspringe	Lippe	15581	290	1.79	0.12	0.05	0.16	0.29	0.09	0.11
IO It	Bordhen, Etteln Bordhen, Nordbordhen	Alterau.	11683	73	19.58	0.73	0.30	0.07	1.71	0.52	0.63
		Lohre	10933	992	110	18/48/	0.04	0.40	16.66	5.02	0.00
9	Busten-Kord Busten Stornhausen	Aime Osterachtedda	18'000 3'800	10	1.43 16.90	0.10 1.18	0.04	0.12	0.23 2.74	-D.07 -D.83	100
4			6100	148	100000	4.77	0.91	0.02	180	0.64	0.66
6	Bussen, Wowshiburg Delorius-Kennstadt	Aire Sionne	23333	245	11.10 4.28	0.30	0.12	0.02	0.60	0.21	0.25
86. ·	Harveltof	Erra	14756	75	8.83	0.61	0.25	0.73	1.43	0.43	0.52
77	Lightanau, Blankermos	Attenue	157		0.99	0.07	0.03	0.08	0.16	0.05	0.06
18	Lightensu, Holltheim	Holthelmer Bach	944	4	9.46	0.66	0.27	0.78	1.54	D.46	0.58
99	Lightenau, Grundsteinheim	Sauer	0'039	107	2.70	0.19	0.08	0.22	0.44	0.13	0.16
30	Lidhania: Kleinenberg	Bach von Nenenberg	1'365	43	1.42	0.10	0.04	0.12	0.25	0.07	9.08
31	Lichteniau Attenzantei	Money	4138	54	9.72	0.68	0.29	0.80	1.58	0.48	0.58
13	Padetorn, Dahl	Eletach	2'826	112	2.77	0.19	0.08	0.23	0.45	0.14	0.18
и	Padedom, Sandy	Lippe	149/000	11190	9.60	0.67	0.27	0.79	1.56	0.47	0.57
6	Salzkoften, Verne	Heder	19793	1'123	0.79	0.05	0.02	0.06	0.13	0.04	0.05
17	Satzkotten, Hengeleberg	Altre	4'050	167	10.91	0.79	0.31	0.90	1.27	0.53	9.66
29	Bad Wünnenberg, Haaren	Alterias.	3'800	59	10.06	0.70	0.29	8.81	1.64	0.49	0.60
10	Bad Würnerberg -Neu-	Abu	7900	247	1.81	0.11	0.06	0.13	0.26	0.08	0.10
tt	Borgholphauson, Int Racks	Hassel	6373	41	6.91	0.48	0.20	0.57	1.12	-0.34	5.41
11	Düşeeldorf-Süd	Rheit	320'450	956'966	1.77	0.12	0.05	0.15	0.29	0.09	0.11
12	Düşseldorf-Hubbalrath-Dorf	Hubbolrother Bach	436	3	6.71	0.47	0.19	0.95	1.00	0.33	0.40
13	Disseldorf Hubbulrath-Sauerweg	Koppelsbach	145	2	3.63	0.25	0.10	0.30	0.58	0.18	0.22
5	Solingen-Berg	Wupper	60478	4722	5.51	0.38	0.16	0.45	0.90	0.27	0.38
Я	Solinger-Gräftath	liter	11479	57	9.03	0.63	0.26	0.74	1.47	0.44	0.54
17	Solingen-Ohligs	180r	86585	990	12.11	0.84	0,34	1.00	1.97	0.59	0.72
18	Wapportal-Buchenhofen	Wepper	300198	3/628	5.12	0.38	0.15	0.42	0.63	0.25	0.30
19	Wappertal-Kohlfatti.	Wupper	105'362	3796	6.15	0.43	0.17	0.61	1.00	0.30	0.36
10	Wappertal-Schöller	Déssel	169	49	3,58	0.25	0.10	8.30	0.58	0.18	0.21
it.	Erlinath-Hochdatri	Esolobach	32070	16	14.96	5.04	0.42	1.24	2.43	0.73	0.69
2	Haan-Gruites	Dissel	5'236	78	5.30	0.37	0.15	0.44	8.86	0.26	0.31
ů.	Holiganias Abskicke	Rinderbadk	29/961	121	11.06	0.77	0.31	0.9t	1,80	0.54	0.66
15	Holigenhaus-Angertal	Anger	43/992	247	8.42	0.58	0.24	0.69	137	0.41	0.50
9	Hitten	Mathemaca Back	65588	998	12.06	0.91	0.37	1.08	2.13	0.64	0.78
17	Materian Materia	Matthanner Bach	31208	147	9.54	0.66	0.27	0.79	1.58	0.47	0.57
19	Motimann Metakasson	Krumbach	6020	3	27,06	1.88	0.77	2.23	4.39	1.32	1.60
	Metimen-Obschwerzbech Edinah Associated	Hausmannagraben Disseri	1'544		34.96 4.93	174	0.71	2.06 0.4t	436	1.22	1.48
10 Et	Erkrath-Heundortal Monteum	Dissel Rasin	786	91 944'454	4.93 1.74	0.12	0.14	0.41	0.80	0.24	0.10
1	Rainger-Beltschard	Breitscheider Bech	101'068 5'933	962454	587	0.12	0.05	0.14	0.26	0.09	0.10 0.35
4	Ratinger-Hosel-Batrinol	Schlebracher Bach	5933 9810	18	14.15	0.58	D.40	1.17	230	0.89	0.84
5	Ratinger-Hosel-Diskelsbach	Dickelshach	2340	16	4.47	0.56	0.13	0.07	0.73	0.89	0.84
7	Ratinger-Hose-Dickersouch	Anger	60450	418	1152	0.60	0.33	0.95	1.87	0.56	0.66
8	Ratinger-Homberg-Súd	Schweitbech	2830	31	6.35	0.60	0.33	0.52	1.03	0.56 0.31	0.38
it .	Velberi-Hosperal	Hesperbach:	8253	38	10.50	0.73	0.16	9.87	1.76	0.91	0.50
2	Velbon-Tonsholde	Eigener Bach	2682	7	17.70	123	0.60	1.48	2.87	0.87	1.06
9	Water-Dissel	Düssel	3/380	32	531	0.37	0.15	0.44	0.86	0.26	031
4	Bergische Diakonie Aprath	Oberdüsseler Bach	375	2	6.94	0.48	0.20	0.57	1.13	0.34	041
t	Duisburg-Huckingan	Anger	92197	713	12.53	0.97	0.36	1.03	2.03	0.61	5.74
2	Dusbug-Verinden	Brusbach	23/308	F13	26.14	140	0.57	1.00	3.27	0.61	1.19
3	Duisburg-Hachfald	Rhair	53923	996'558	1.82	0.13	0.05	0.15	0.30	0.09	0.11
4	Duisburg-Kasalerfeld	Rate	252'318	18143	5.79	0.40	0.18	8.48	0.94	-0.28	934
5	Enschertühlerlage	Evector	908188	10/820	8.41	0.58	0.16	0.48	137	0.41	0.50
6		Atle Errocher	239083	1/673	6.42	0.45	0.18	0.63	1.04	0.41	0.50
9	Duisburg-Afte Ernscher Deschare Describer and			957112	1.82	0.45	0.18	0.15	0.30	0.09	
	Dusburg-Rheimaisen	Rheis	131'807	996/310	1.82	0.13 0.13	0.05	0.15	0.30	0.09	0.11
0											
1.	Moen-Gerdl Essen-Burgatendorf	Rhein Ruhi	34012	16794	3.82	0.27	D.11	0.31	0.62	0.19	5.23

			angeschit.	MMG (List (korrigier) nit Abwassermenge, falls ZAbwasser >	Benzotriazol	Carbonazopie	Clarithronycin		Metaprolai	Sotalel	Sulfa- methosassi
CA_NUMBER	Kilirunfagen-IGUES-Name	Vorflater	Einwohner	989C) (L/k)	[jgt]	lest	(pgt.)	[µgt]	[ret]	[µg/L]	[hth]
20	Essen-Kethvig Direstaken	Ruhr Rottach	54918 59250	17555	5.65	0.33	0.13	0.39	0.76	0.25 6.29	0.28
21	Hammanain	insel.	20'525	103	11.94	1.63	0.34	0.96	1.94	0.56	8.71
72	Hamminian-Marentral	lated	524	34	8.92	0.62	0.25	0.74	1.45	5.44	0.53
73	Haeron	Lippe	8/973	17'450	6.46	0.31	0.13	0.37	0.72	0.22	0.26
24	Noerstgen	Hoerstgener Kendel	991	25	1.82	0.13	0.05	0.15	0.29	0.09	0.11
25	Kamp-Lintleri	Grafie Goarley	38'485	92	18.89	1.31	0.54	1.56	3.07	0.02	1.12
26	Rheinberg	Woersbach / Pheinberger Alb	12087	1512	2.12	0.16	0.06	0.16	0.35	0.10	0.13
27	Schemback	Schembecker Mühlerbach	12556	45	18.11	1.12	0.46	1.33	2.62	0.79	0.96
20	Labbeck	Haffack	998	38	1.97	9.06	0.63	0.10	0.19	0.06	0.07
29	Sonebeck	Kerverheimer Mühlerfleutt	5'300	16	14.44	1.00	0.41	1.19	2.34	0.71	0.86
30	Voorde	Moninbach .	27509	40	23.88	1.66	0.68	1.07	3.88	1.17	1.42
31	Wesel Fision	Rhein Rhein	79'000 1'350	1/026/172	1.98	0.14	0.96	0.16	0.32	0.10	0.12
33	Xantan-Vynen	Rhein	3/094	1034961	1.97	0.14	0.96	9.16 9.18	0.32	0.10	0.12
34	Xanton-Listingen	Rhein	18247	1034988	1.97	0.14	0.06	0.16	0.32	0.10	0.12
40	Exam-Sud	Rute	121514	17580	4.26	0.30	0.12	0.36	0.69	0.21	8.25
201	Bochum-Oulbachtal	Oeback	181329	829	9.86	0.69	0.28	0.61	1.60	0.48	0.58
203	Dortmund-Scharehorsk	NN	110/902	496	10.67	0.76	0.31	6.90	1.76	0.53	0.64
204	Dortmand-Deuten	Ensilve	391104	226	7.79	0.54	0.22	0.64	1.27	8.38	0.46
305	Hagen Fley	Lerne	35'407	8198	1.82	0.13	0.05	0.15	0.30	0.00	0.11
206	Hagen Vottalle	Betr	1881605	17935	3.55	0.22	0.09	0.26	0.51	0.15	0.18
206	Breckerleid	Epacheider Back	6519	58	5.26	0.37	0.15	9.43	0.85	0.26	0.31
210	Enrepetal Obertoxer	Dahlerbecks	1523	*	9.72	0.86	0.28	0.80	1.58	0.46	9.56
211	Envepetal Rüggeberg	Helenbecke	1796	4	19.40	1.35	0.55	1.60	3.15	0,86	1.15
213	Gewisterg	Erreps	67123	801	5.25	0.37	0.15	8.42	0.85	0.26	0.31
215	Are Worth in Oberstuder Hollingen	Am Vogelbruch	128	10077		1.00	100.00	10.00			
218	Haltingen	Suftr Coloradore	75'004	18990	3.53	0.25	0.10	0.30	0.58	0.18	0.21
219 222	Schweim Weter-Albringhausen	Schweime Elbacho	27101	152	801 641	0.56 0.45	0.23	0.66	1.84	0.36 0.31	0.47
224	Witten-Hiorbodo	Ruhr	9/335	18592	3.47	0.24	0.10	0.29	0.96	0.17	0.21
225	Rahmodotal	Rahmede	30'372	207	6.58	0.46	0.10	0.54	1.07	0.02	0.30
226	Africa	Lunne	21618	7960	1.67	0.12	0.05	0.14	0.27	0.06	0.10
227	Balve	Home	11943	173	5.74	0.40	0.16	0.47	0.99	0.29	0.34
228	Balve Biregion	Home	2'286	243	4.51	0.31	0.13	0.37	0.73	0.22	0.27
229	Herschald Kleabert	Osolor	84	10	0.38	0.03	0.03	0.03	0.06	0.02	0.02
230	Herner	Ose	37347	365	4.50	0.32	0.13	0.36	0.75	5.23	0.27
231	Herechied Berghagen/Oberstuberg	Statesper-Bach	68	0	6.64	0.46	0.19	0.55	1.08	0.33	0.35
232	Herscheid Oberholes	Schwarze Ahe	42	0	3.90	0.27	0.11	0.32	0.63	0.10	0.25
233	Herscheid Wellis	Solnbeios	. 45	0	5.39	1.36	0.15	0.44	0.88	0.26	0.32
236	Herscheid	Ahe	4'991	36	8.24	8.43	0.18	0.51	1.01	0.51	9.37
237	hieristy: Bairbachtid	Esotoch	68'854	306	T.84	0.56	0.22	9.65	1,27	0.38	0.46
236	Isedohn Letristhe	Lerrie	36272	7911	1,00	0.12	0.05	0.15	0.29	0.08	0.11
239	Klerspe Batehol	Volme	67067	135	T.10	0.49	0.20	0.59	1.15	0.30	0.42
241	Liderscheid Schlittenbachtell	Schiltenback	18'220 29'795	122	6.72	0.45	0.19	0.55	1.09	0.33	0.40
244	Volnietal Meinerchagen Windebruch	Yolme Bigge	27/00	784	1.35	0.46	0.04	0.10	0.22	0.07	0.06
245	Meinerchages Valbert	hre	3/440	20	7.87	0.55	0.22	0.66	1.38	0.09	0.47
246	Menerchagen	Volne	15074	- 69	7.99	0.53	0.22	0.63	1:23	0.37	0.45
247	Monden	R.Mr.	70045	8'694	2.09	0.15	0.09	0.17	6.34	0.10	0.12
248	Neuenrade	Honce	10'200	62	5.59	0.39	0.16	0.46	0.91	0.27	0.30
260.	Plottenberg	Lanne	29914	8'620	1.28	0.09	0.04	0.11	0.21	0.06	90.0
252	Schulksmühle	Votree	24'281	464	7.00	0.51	0.21	0.60	1.18	0.36	0.43
254	Werdohl	Lanne	21582	7164	1.43	0.10	0.04	0.12	0.23	0.07	0.06
255	Hagen-Booke	Lerne	35762	8936	1.95	0.14	0.06	0.16	0.32	0.10	0.12
25B	Dortmund-Klussmberg	Ruty	36	14482	2.80	0.19	0.08	0.23	0.45	0.14	9.17
267	Kierspe Direcheln	1997		165	0.00	0.00	0.00	0.00	0.00	0.00	0.00
258	Herdecke-Volläsitte	Entirities	38	12	0.15	0.01	0.00	0.01	0.02	0.01	0.01
902	Boltrag	Erector	726785	8563	7.65	0.55	0.22	0.63	1.24	0.37	0.45
903	Gelen Ancher-Pickerschlenbach	Prokonúhlenbech	47348	250	8.85	0.62	0.25	0.73	1.44	0.43	0.52
506	Zentralkänverk Ahaus Deskald III austra	Abauter Ax	37477	115	14.56	1.01	0.41	1.20	2.37	671	0.86
500 512	Bockell-Villesum Borken	Alte As Socholar As	70527 41000	300	10.65 7.33	0.75	0.25	0.60	1.78	9.53	0.64
513	Gescher-Hanvick	Servel	10164	410	7.30	8.51	0.21	8.60	1.19	0.36	0.43
515	Gronau	Onkel	45300	350	7.99	9.56	0.23	0.66	1.30	0.39	947
516	Hank	Onkel	T681	155	4.81	0.34	0.14	0.40	0.90	0.24	0.29
517	Heideri	Dorbach	1511	26	1276	0.89	0.35	1.86	2.08	0.60	0.76
518	Isseburg	issel	11312	432	11.36	0.79	0.32	0.94	1.84	0.58	0.67
521	Legden II	Dinkel	6/300	58	7.14	0.50	0.20	0.56	1.16	0.36	0.42
522	Racifold	Löchter Münlenbach	6/317	33	8.56	0.60	0.24	0.71	1.39	0.42	0.51
528	Rassfold-Erie	Schernbecker Mühlenbach	3'419	7:	20.69	1.45	0.99	1.72	3.39	1.02	1.24
524	Rekon	Boombach	8'560	37	10.35	6.72	0.29	0.85	1.68	0.51	891
525	Rakon Maria-Yoon	MM	31137	11	12.37	0.86	0.35	1.02	201	0,61	0.73
526	Rhide-Vardinghalt	Rheder Bach	294	9	0.45	0.03	0.01	0.04	0.07	9.02	0.03
927	Rhide	Rheder Bach	17213	71	11.07	0.77	0.31	0.91	1.80	0.54	0.66
200	Schöppinger	Vichta	5'411 92	55 3	2.57 1.38	0.18	0.07	0.21	0.42	0.07	0.15
130 131	Stadtishe-Blaten Stadtishe	N.N. Berkel	18/200	538	7.09	0:10 0:46	0.04	0.11 0.58	0.22	0.07	0.08
131	Zentralitärvent Sudoto	Schinge .	6/3/3	336 48	7.83	9.55	0.22	0.65	1.12	0.36	0.46
132	Velon	Socioler An	11286	168	3.02	8.20	0.00	9.25	0.49	0.15	0.18
536	Vreden	Servel	20781	612	7.76	0.04	0.22	0.64	1.20	0.15	0.40
537	Datener-Wühlerbach	Datteiner Mühlenbach	64581	527	5.53	0.39	0.16	0.46	0.90	9.27	0.33
230	Dorsten	Harvitech	58'526	290	8.00	0.63	0.26	0.75	1.47	0.44	0.54
542	Donsten-Wulfer	Gecksbach(Mitelaut)	21070	121	7.84	0.55	0.22	0.65	1.27	0.26	0.46
345	Haltem Hullert	Lope	2129	12395	4.67	0.33	0.13	0.36	0.78	9.23	0.26
947	Haltern-West	Lippe	35'505	13990	4.82	0.34	0.14	0.40	0.78	0.24	0.29
548	Horton-Westerholt	Rapphols Muhlenbach	25117	103	10.90	0.76	0.31	0.90	1.77	0.53	0.66
149	Mari-Ost	Siokingmühlenbach	30929	166	13.06	0.91	9.37	1.06	2.12	0.64	9.77
950	Mart West	Weierbach	37834	149	11.39	0.79	0.32	0.94	1.85	0.56	0.68
561	Mari-Lenkerbook	Solingmühlenbadh	17311	86	9.15	0.64	0.26	0.75	1.49	0.48	0.54
553	Watrop	Solvearzbach	28'906	154	8.34	0.66	0.24	0.69	1.35	0.41	0.46
901	Bonn Bad Godesberg	Rhein	83'489	915788	1.61	0.11	0.05	0.13	0.26	0.06	0.10

			anganchi.	MMQ (LN) (configure rail Abwassermungs, falls (Abwasser >	Benzotriwol	Carbanazepie			Metoproiol	Sotalol	Sulla- methoragoi
A NUMBER	Klimaniagen-/GUES-Name	Vorflater	Einwohner	MWO) (L/k)	[pgt]	(aut.)	(ppt)	[pg1]	hari	[pgt]	(Japl.)
802	Born Dusstorf Born Deuer	Rithern Rithern	23946	935/168 916/008	1.64	0.11	0.05	0.14	0.27	0.08	0.10 0.10
804	Born Selenweg	Phon	179/043	9161028	1.62	£11	0.05	0.13	0.26	0.08	2.10
805	Köln Stammheim	Rhen	768273	938'425	1.69	0.12	0.65	0.14	0.27	0.06	0.10
106	Killn Rodenbirches	Rheiri	54190	907'300	1.05	0.11	0.05	0.14	0.27	0.06	0.10
BOT	Köln Langel	Phon	68573	938964	1.73	0.12	0.05	0.14	0.28	0.06	0.10
808	Kolin Weiden	Koloer-Pantkaral	49/390	148	14.91	1.04	0.47	123	2.42	0.72	0.88
809 810	Köln Wahrr	Rhein Erit	63817	937167	1.05 2.08	0.11 0.14	0.05	0.14	0.27	0.06	0.10
812	Berthurg Kaster Bergheim Auenteirn	Gilbach	15993	9/276	21.09	1,47	0.60	174	3.42	1,00	1.25
815	Bergheim Gessen	Pulheimer Bach	7025	25	12.38	0.86	0.35	1.02	2.01	0.61	9.73
917	Bergheim Kanten	Erft	92949	1371	12.14	0.84	0.34	1.00	1.97	0.59	9.72
818	Broki	Palmersdorfer Bach	44990	140	14.37	1.00	0.41	1.18	2.30	0.70	0.85
819	Esitorf Niederembt	Finkelbach	2'443	56	3.62	0.25	0.10	0.38	0.99	0.18	4.21
820	Esdorf	Elsdorfer FileS	11288	34	14.86	1.03	0.42	1.23	2.41	0.73	0.88
821	Erfistodi	Erit.	49735	(1001	11.09	0.77	0.31	0,91	1.80	0.54	0.66
822 824	Frechen Hürth	Fracherer Bach Südlicher Randkanol	35'452 58'000	134	11.88	0.83 0.81	0.34	0.98 0.96	1.90	0.58 0.57	0.70 0.68
825	Pultoin	Koher-Randkanal	53'000	963	13.51	0.94	0.38	1.11	2.19	0.66	0.80
B26	Wasseing	Rhein	32333	835/643	1.64	£11	0.05	0.14	0.27	0.06	0.10
827	Wesseling Linfeld	Rhan	41051	935'545	1.64	0.11	0.05	0.14	0.27	0.08	0.15
828	Bergnaustatt Schönerthal	Dórspa	15928	187	383	0.27	0.11	6.32	0.92	0.19	0.23
829	Engelskirchen Ründeroth	Agger	81847	1'044	5.23	0.36	0.15	6.43	0.85	0.26	6.31
831	Engelskindren	Agair	97606	1'253	5.21	0.36	0.15	0.43	0.65	0.26	0.31
832	Engelskirchen Bickenbach	Leppe	14 3 3 2	140	4.59	8.32	0.13	0.38	0.74	0.22	8.27
833	Gummershach Rospe	Rospetiant	16463	131	563	0.39	0.18	9.46	0.91	9.28	0.33
E34	Gurerensback Kauremendti	Agger	29950	479	4.54	0.32	0.13	0.37	0.74	0.22	0.27
835 836	Gunnanitach Brunchi Michanistan	Agger	10858 33983	708	1.62	0.33 0.11	0.14	0.40 0.13	0.78	0.08	0.15
836 836	Hückerungen Lindar	Wupper Lennels	9139	62	6.63	0.46	0.05	0.13	1.08	0.00	0.10
839 839	Linder Bruch	Solr	41452	187	1.07	0.07	0.00	0.00	0.17	0.05	0.06
MO:	Marienheide	Wappet .	9/2/2	150	2.77	0.19	0.08	5.23	0.43	0.14	0.16
843	Morstrach Volperhauser;	Wissetsact	8706	157	2.49	0.17	0.07	0.21	0.40	0.12	0.15
865	Montach Holpe	Holperbach	2'096	32	2.95	0.21	0.08	0.24	0.48	0.14	-0.16
M6	Nümbrecht Homburg-Briti	Bell	18910	136	6.25	0.44	0.18	0.52	1.02	0.31	0.37
847	Radevornwald	Wupper	43765	1'640	2.37	0.17	0.07	0.20	0.39	0.12	0.14
853	Reichstof Brüchernühle	West	6'804	187	2.83	0.20	0.08	0.23	0.46	0.14	4.17
854	Reichstof Edicentagen	Steinägget	2704	29	4.19	0.29	0.12	0.35	0.88	0.21	0.25
855	Reichstof Ularamétrie	Wat	41070	45	4.92	0.34	0.14	0.41	0.80	0.24	4.29
857 858	Walderol Brespingen Werk	Walds/steads Wells	12962	50 209	8.85 4.14	0.62	0.25	0.73	0.67	0.43	0.52
859	Wiehl Weiershagen	West	12163	345	4.83	0.33	0.14	9.40	0.78	0.23	0.28
B61-	Berglech-Gladbach	Rechterheinischer Kläner Ran		576(200)	0.01	0.00	0.00	0.00	0.00	5.00	0.00
864	Kürten Dürscheid	Dürschbech	0/838	45	9.82	0.66	0.28	0.81	1.59	0.48	0.58
867	Kürten	Kürtonar Sütü	11010	247	2.00	0.14	0.06	0.17	0.22	0.10	0.12
960	Odentus Osenau	Dhine	11300	584	215	0.15	0.06	0.18	0.35	0.11	0.13
870	Overafti	Apper	12906	1'351	530	0.37	0.15	0.44	0.86	0.26	0.31
871	Overath Lehrebach	Side	17020	834	2.78	0.19	0.08	0.23	0.45	0.14	0.16
872	Rosesth	Side	25563	914	3.79	9.26	0.11	0.31	0.42	0.19	8.22
873 875	Wentelekirchem	Braansberger Bach	13/850 3/03/	**	289	0.19	0.08	0.22	0.44	0.13	0.16
B76	Wernelakirchen Chüns Bad Honnel Aepidlenberg	Eligentrisch Kodwintech	6502	57 34	8.61	0.60	0.24	0.71	1,40	0.12	9.51
877	Bad Hornel	70mm	18150	915/012	1.01	0.11	0.04	0.13	0.20	0.08	0.10
ETB.	Bombain	Althorar Bornhoomer Bach	22939	67	15.96	1.11	0.45	132	2.59	0.78	0.56
879	Borréein Sechtert	Mutierbach	18974	16	13.56	0.94	0.38	1.12	2.20	0.66	0.80
800	Bornheim Hersel	Rhein	77028	835/168	1.04	0.11	0.05	0.14	0.27	0.06	0.10
801	Eltori	Sleg	19'554	37255	5.98	0.42	0.17	0.49	0.97	0.29	9.35
862	Hennof	Sing	44387	3981	6.08	0.42	0.17	9.50	0.99	0.30	9.36
886	Hennof Greyelslofon	Sieg	27274	37370	5.80	0.40	0.90	0.48	0.94	0.26	0.34
806	Königswinter	Rhein	20129	915'019	1.41	0.11	0.05	0.13	0.29	0,08	0.10
891 892	Lohmar Lohmar Wahlscheid	Agger	67552 97098	1'367	5.47	0.36	0.16	0.45	0.89	0.27 0.27	0.32
893 890	Lohnar Donroth	Agger Agger	17100	1'486	5.85	0.39 0.41	0.19	0.46	0.90	0.27	0.35
896	Multi	Wahribach	T614	36	8.43	0.66	0.17	0.76	1.53	0.45	0.56
997	Much Hillosteim	Markelsbach.	2242	15	6.58	0.46	0.19	0.54	1:07	0.32	0.39
901	N - Seelscheid Seelscheit	Warigortech	8'416	28	13.66	0.95	0.39	1.13	2,22	0.67	0.81
902	N -Septocheid Noonkirchen	80	9/838	538	4.74	0.33	0.12	0.39	0.77	0.23	9.28
103	Nedarkassel	Rhein	38893	135'545	1.64	0.11	0.05	0.14	0.27	0.08	0.15
904	Rhanbact	Wallach	20/890	63	14.97	1.04	0.42	1.23	2.43	0.73	0.60
908	Rheinbach Leth	Sürstbachi Schleisbach	826	- 5	6.79	0.47	0.19	0.56	1,10	0.33	0.40
909	Resolute Flathers	Swebach	35734	152	10.56	0.73	0.30	0.67	1.71	6.52	8.63
911	Respectation Sixted	Briti Donatura	18179	400	4.22 6.33	0.29	0.12	6.35 6.61	0.69	5.21	0.25
912 913	Huppichloroth Wintersched St. Augustin Wenden	Derentach Serv	2'658	19 6/217	6.20	0.43 0.46	0.18	0.51	1.13	0.30 0.34	0.37
914	Sweets Mel	Sieg Swettach	10018	243	12.33	0.86	0.25	1.02	2.00	0.60	0.73
ns	Sestal Hemeryheirt	Swetach	7788	520	6.50	0.45	0.18	0.54	1.00	0.32	0.39
916	Trosdorf	Seg	64152	07224	7.41	0.52	0.21	0.61	1.20	0.36	0.44
118	Wachtberg Pech	Godesherger Bach	6174	37	9.05	0.63	0.26	0.75	1.47	0.44	0.54
919	Wachtberg Zülighover	Wehlerrer Bach	222	12	8.04	0.56	0.23	0.66	1.31	0.36	0.48
120	Wachtberg Andori	Godesberger Bach	1309	11	5.18	0.36	0.15	643	0.84	0.25	0.31
922	Windeck Contentrals	Sieg	57018	3019	6.11	0.43	0.97	0.50	0.99	0.30	0.36
F24	Windeck Herchen	Sieg	2681	37083	6.03	0.42	0.17	0.50	0.98	0.30	0.36
825.	Windeck Au	Sieg	28442	2746	6.40	0.45	0.18	0.53	1.04	0.31	0.36
826	Windeck Ehrenhausen	Irsenhach/Scharfenbach	7'261	58	5,65	0.39	0.16	9.47	0.92	0.28	0.33
827	Windeck Rosback	Sieg.	T261	2993	6.09	0.42	0.97	0.50	0.99	0.30	0.36
E30	Rösrath Hoflerhof	Hofferhafer Bach	50	Z SALESTE	1.40	0.10	0.04	0.12	0.23	0.07	0.06
932 933	Levertusen-Sürig Gumnersbach Plene	Rhain Krymmerau	264 1692 179	941'278	1.70	0.12 0.15	0.06	0.14 0.18	0.28	0.06	0.10
101	Düsseldorf Nord	Rhein	301328	959'87'1	1.79	0.10	0.05	0.15	0.39	0.09	0.12
102	Krafeld	Shen.	240'866	961'484	1.80	0.12	0.05	0.15	0.29	0.09	9.11
104	Minchengladbach GWK I	Ners	406'000	1189	15.43	1.07	0.44	127	251	0.76	0.51
105	Emmerich	Rhain	29/597	T941'894	1.96	5.14	0.00	0.16	0.32	0.10	6.12

			angescht.	MNG (L/s) (korrigier) mit Altwassermonge, falls ZAbvasser >	Berastriassi	Carbonszapin			Metoprotol	Sotelal	Safe- metrocard
KA NUMBER	Kläranlagen-/GUES-Name	Vorfluter	Elewohner	MNQ((Lb)	[Apt]	Best	[pgL]	[hgt.]	(pgf.)	[ang/L]	[jugit.]
2110 2112	Gelderri Godh	Niero Niero	38/900 28/195	7 8 9 0 7 2 9 0	957	1.01	0.41 0.26	1.20	2.36 1.62	0.71	0.90
2113	Goch-Hassium	Kendel	1'000	24	1.91	0.13	8.06	0.16	0.31	0.09	0.11
2114	Goth - Kessel	Nen	11800	3406	9.55	0.86	0.27	0.79	1.55	0.47	0.57
2115	Kakar i-Itmnepel	Rhein	30100	1042236	136	0.14	0.06	0.16	0.32	0.10	0.12
2116	Landwehrtach(Kerken)	Landwehr	12300	72	7.68	0.53	0.22	0.63	1.25	0.38	0.40
2117 2118	Kevelaer-Weiten Kevelaer-Kervelheim	Ners Kerverheimer Müttenfleuth	1'950	1938	14.53	0.46	0.41 0.18	1.20	2.36	0.71	0.85
2119	Kevelaer-Weste	Ners	441400	2 2 2 2 9	13.71	0.46	0.09	1,13	2.23	0.47	0.40
2120	Kleve Salmorti	Rhein	69167	1047907	1.66	0.14	0.06	0.96	0.32	0.90	0.12
2122	Rieve Schenkenschanz	Molorsysten	106	8	0.63	0.04	0.02	0.05	0.10	0.03	0.04
2423	Rees-Haffon	Reeser Althoin	7948	- 11	11.77	0.82	0.33	0.97	1.91	0.58	0.70
2126	Rheundt Schaephuysen	Nameper Fleuts	1'900	14	17.61	1.23	0.50	1.45	2.86	0.96	1.94
2127	Rhaurit	Nanneper Flauth	3500	21	1891	1.32	0.54	1,58	3.07	0.93	1.12
2128 2129	Haronges Straeten	Amandusbach N.N.	2300	21	4.82	0.34	-0.14	0.40	0.78	0.24	0.29
2130	Dedwin	Dedenser Graben	7400	33	10.06	0.70	6.29	0.63	1.63	0.49	0.60
2131	Wachtandonk	Hauptertwisserungskenal	6300	35	8.15	0.57	0.23	0.67	132	0.42	0.48
2132	Domagon-Rhanfare	Rhain	81006	941674	1.74	0.12	0.06	0.14	0.28	0.09	0.10
2133	Grevenbroich	Wevelrighssener Entwamery	43/484	124	15.70	1.09	0.46	1.29	2.55	0.77	0.93
2134	Wevelrighoven	Erit	21128	¥781	2.07	0.54	0.06	0.17	0.34	0.10	0.12
2137	Clerke	Juchener Bech	24160	66	16.89	1.19	0.48	1.39	2,74	6.83	1.00
2138	Neuro-Oil	House	79758	961'900	1,78	0.12	0.05	0.15	0.29	0.04	0.11
2139	Neuse-Sat Annual	Erit College	70/490	11006	2.42	0.17	0.07	0.20	0.39	0.12	0.54
2140 2141	Arnatel	Gilbach	37426	72 91	15.71	0.97	0.45 0.40	1.30	2.55	0.77	0.83
2942	Brüggen	NN STATE	#215 #800	- 91	74.00	0.01	1040	1.43	2.47	0.44	0.43
2143	Getati	News.	76/600	7502	14.57	1.01	0.41	1.20	2.37	0.71	0.86
2166	Tónisberg	Nemeper Fleuth	3'400	9	17.92	1,25	0.51	1.48	291	0.88	1,06
2145	Nete	Netto	48/300	234	13.75	0.96	0.39	1.9	2.23	0.67	0.82
2146	Niederkrüchten-Overheifeld	Withlenbruchgration	15297	73.1576		0.00		50,500	1.1020111	Mala	
2147	Schwaintal-Amen	Kranestach	16/8/19	66	10.93	0.76	-0.31	0.90	1.78	0.54	0.65
2149	Dülken	Neto	23/300	56	18.77	1.31	0.53	1.55	3.05	0.92	1.11
2150	Kaarst-Nordkanal	Nordkanal	57/299	314	11.72	0.82	0.33	0.97	190	0.67	0.69
2401 2402	Hamm-Westbuonnen	Ahse Beseke	169 65	912 86	9.02	0.05	0.14 0.00	0.41	0.01	0.25	0.00
2406	Hamm-Padrighesson Hamm-Uerthop	Lippe	4606	8290	2.40	0.17	0.07	0.20	0.39	0.12	0.14
2407	Harrin-Mattenbecke	Ligge	47987	9899	2.68	0.19	0.08	0.22	0.44	0.13	0.16
2409	Arabeti	Balv	21177	1989	1.27	0.09	0.04	0.11	0.21	0.06	0.08
3410	Amsberg-Network	Retr	56227	#777	1.16	0.08	0.03	0.10	0.19	0.08	0.67
2411	Arraberp-Wildshausen	Bulle	37576	2688	1.11	0.08	0.03	0.09	0.18	0.05	0.07
2413	Bestvig-Vehreide	Rate	32533	951	1.66	0.12	0.06	0.14	0.27	0.08	0.10
2415	Brion-Aime	Alms	4'066	330	0.55	0.04	0.02	0.05	0.09	0.03	0.03
2416 2417	Briton-Scharfenberg	Berrecus	1/384	146	9.54 1.18	0.00	0.27	0.79	1.55 0.19	0.47	0.57
2417	Briton-Madfeld	Happecke Asbacti	2046	50	3.18	0.08	0.03	0.10	0.16	0.06	0.07
2419	Brion-Bontisroten	tte	463	300	0.18	0.01	5.01	0.01	0.03	0.01	0.01
2420	Brign-Risen	N.N.	131	1	2.04	0.14	0.06	0.17	0.33	0.70	0.12
2421	Brilon-Pelerstom-Gutennagen	Happecke	1790	80	1.00	0.07	0.03	0.08	0.16	0.05	0.05
2422	Brion-Esshoff	Schlagwasser	78		4.06	0.29	0.11	0.33	0.66	0.20	0.24
2423	Brilan	Vitee	15504	108	6.42	0.45	0.18	0.51	1.04	0.31	0.38
2424	Eslote	Salveybach	5709	729	0.36	0.02	0.01	0.03	9,06	0.02	0.02
2425 2426	Estotie-Workolfhausen	Rane Rane	11968	977	1.21	0.08	0.03	0.10	0.20	0.08	0.07
2427	Estohe-Bremkii Hallerberg	Nume	3263	150	2.14	0.15	0.06	0.19	0.36	0.12	0.13
2428	Hallenberg-Hesborn	Ótte	990	7	6.03	0.42	0.17	0.60	0.98	0.90	0.36
2431	Manshorp-Bredolar	Dianel	4243	T092	0.75	0.05	0.02	0.06	0.12	0.04	0.04
3434	Marsherp-Westheim	Denel	31986	17334	130	0.09	0.04	0.11	0.21	0.06	0.08
1435	Maraberg-Vible Nec	Diemel	11620	T341	1.12	0.08	0.03	0.09	0.18	0.06	0.07
2437	Madabadi-Barpa	Otke	5'424	184	2.52	0.16	0.07	0.19	0.36	0.11	0.14
2438	Nochbed-Obeschledon	Wilde Aa	2'224	80	1.24	0.09	0.04	0.10	0.20	0.06	0.07
2439	Medidadi-Dissisir	Otto	349	29	2.11	0.15	0.06	0.17	0.34	0.10	0.12
3443 2445	Schmallenberg-Brackt Schmallenberg-Nordensu	Arpe Nesselbach	530 200	16	9.70	0.04	9.02 9.02	0.83	1.58	0.48	0.58
2446	Schmalenberg-Hothausen	NA NA	730	- 6	1.84	0.41	0.17	0.48	0.95	0.29	0.35
2447	Schmalarberg-Wombach	Treate	389	18	0.07	0.07	0.03	0.08	0.16	0.05	0.06
2448	Schmalerberg-Weedeld	Latrie	871	- 36	1.00	0.08	0.03	0.03	0.18	0.05	0.00
2449	Schnalartery	Lagne	10516	206	2.65	0.18	0.06	0.22	0.43	0.11	0.95
2452	Winterberg-Elkeringhauses	Orke	4110	41	4.55	0.32	0.13	0.38	0.74	0.22	0.27
2453	Winterberg-Zijechen	Nutrie	3/889	- 11	2.26	0.10	5.06	0.69	0.30	0.11	0.13
2454	Winterberg-Niedersteld	Ruly	2920	57	2.29	0.16	9.06	0.19	0.37	0.15	0.14
2455 2452	Arrochte-Altergeseke	Trotzbach	759	101	450	0.31	0.13	0.37	0.75	0.33	0.22
2463	Bad Sassendorf -Neu- Ense-Saveringer	Rosenau Withinstach	10161	37	9.70	0.05	0.13 0.02	0.07	0.73	0.03	0.27
2493 2464	Ense States	Bremer Bach	8491	31	12.36	0.86	0.35	1.02	2.01	0.61	0.73
2469	Erwite-Stokun	Troppach	2700	18	8.68	0.60	0.26	0.72	1,41	0.43	0.92
2470	Erwits-Word	Gaveback	12'500	157	136	0.44	0.18	0.52	1.03	0.31	0.38
2471	Geselve-Eringerfeld	Westerschleckde	396		20000	1900-0	20000	250,000	CONTRACT	50.75	790.0
2476	Geselva	Brandenhäumer Bach	19558	172	5.11	0.36	0.14	0.42	0.83	0.25	0.30
2477	Lippetal	Lippe	10133	7826	2.51	0.17	0.07	0.21	0.41	0.12	0.15
2482	Lippetait	Lippe	63'860	6431	153	0.13	-0.07	0.21	0.41	0.12	0.15
2483 2485	Lippetedt-Eichelborn Mührwese-Henringsen	Lippe Hardoniae Cottoble	3°500 220	7 628	7.52	0.17	0.07	0.21	0.41	0.12	0.15
2467	Mohnesse-Volknghausen	Hereingser Schledde Mohne	9739	702	3.52	0.11	0.04	0.29	0.57	0.17	0.21
2492	Rutes-Krebinghasen	Derrote	254	198	7.02	0.04	- 6.10	0.69	- 001	9.47	- 441
2494	Hutten-Langenetwise	Westerschiede	594								
2495	Rüter	Mohne	67740	155	6.63	0.48	8.19	0.59	1.11	0.33	0.40
2498	Soret	Scentach	50'108	245	9.17	0.94	0.26	0.76	1.49	0.45	0.54
2500	Warstein	Wester	12'030	140	3.85	0.27	0.11	0.32	0.62	0.19	0.23
	120111111111111111111111111111111111111	1994-0-	8376	908	1.34	0.23	0.09	0.28	0.54	0.96	0.20
2501 2503	Warstein Belecke Weiser	Victor	8,188	978	3.19	0.22	0.09	0.26	6000		

			argenchi.	MNQ (L/s) (korrigier) mit Altwassermenge, falls ZAbwasser >	Benastriassi	Carbonszapin			Metoprotol	Sotelal	Selfa- methocasol
KA NUMBER	Kläranlagen-/GUES-Name	Vorfluter	Elewohner	MNG((Lb)	(Jupil.)	Basti	[pgL]	[pgt.]	(pgf.)	[m/L]	[jug/L]
2509 2511	West -Neu- Frondersberg-Fromers	Salzbach Lünemer Bach	19381	147	5.50	0.41	0.17 0.17	0.49	0.96	0.29	0.35
2512	Frontierberg-Gebüren	N.N.	740		3.65	0.25	0.10	0.30	0.50	0.18	0.22
513	Withouth	Bute	10'540	7540	128	0.09	0.04	0.11	0.21	0.08	0.08
2516	Lines-Sesskersendung	Soeke	141,540	2290	8.26	0.57	0.23	0.68	1.34	0.40	0.49
2519	Schweite	Rute	41850	E 494	3.56	0.25	0.10	0.29	0.58	0.17	0.25
2521	Seln-Cappentery	Gerlingtoch	1773		10.24	0.71	0.29	0.84	1.06	0.52	0.61
2522	Selm.	Solmer Badh	18506	930 12106	1.32	0.09	0.04	0.41	0.21	0.06	0.08
2520 2524	Selm-Bolk Umsa-Billmerich	N.N.	8'367 2'283	12100	6.02	0.90	0.17	0.90	0.71	0.21	0.29
2525	Unna Hermorte	Arrecke Back	4784	33	6.50	0.46	0.19	0.54	1.07	0.22	0.39
2526	Unita-Geben	Heorenar Michibach	3923	- 44	150	0.27	0.11	0.32	0.63	0.19	0.23
2528	Werre	Home	37947	186	8.16	0.64	0.26	0.76	1,49	0.45	0.54
2529	Kamen-Körnebach	Soseka	108/781	1418	8.50	0.62	0.25	0.73	1,44	0.44	0.53
2530	Harm-West	Lippe	124/501	10'262	3.13	0.22	0.09	0.28	0.61	0.15	0.19
2531	Rüttes-Kallinghausen	N.N.	86			10,704	5000	200.00	12.000		10,753
2534	Ridwe-Heideng	Motes	15	152	6.60	0.47	5.19	0.50	1.10	0.33	0.40
2535 2537	Sunders-Röhterspretg	Ray	76	42	8.45	0.04	8.00	0.01	0.00	2.50	0.04
2539	Harm-Wartell Rates-Neute	Bevertace Ascrentations	333	- 42	0.17	0.01	9.00	0.01	0.03	0.01	0.01
2540	Binen	Resetach	39938		-						
2544	Acrochie -Neu-	General	950								
2548	Sundern-Brenscheide	flohr	88	1	136	0.09	0.04	0.11	0.22	0.07	0.08
2549	Surdem II Reigem	Raw	29739	491	1.91	0.13	0.05	0.16	0.31	0.09	0.11
2550	Rütter-Westereiten -Neu-	Hankhauser Bach	1706		8.52	0.00	0.27	0.78	1.55	0.47	0.56
2701	Bünde, Spradow	Else	44700	726	12.01	0.84	0.34	0.99	1.95	0.59	0.71
2705	Enger, Beike - Steinbeck	Brandbach	15360	56	12.41	0.86	0.35	1.02	3.05	0,61	0.74
2711	Hiddenh, Schweicheln-Bermbeck	Tiere	47230	7427	7.23	0.90	0.21	0.60	137	0.35	0.43
2712	Hiddenhausen	Brandback .	9240	100	11.01	0.77	0.31	0.91	1.79	0.54	0.65
2717 2723	Lithne-Ulenburg Spenge, ZKA	Gewinghouser-Bach Spenger Mühlenbach	16749	248	11.79	0.82	0.33	0.97	1.91	0.58	0.70
2727 2727	Viorto-Zentral	Spenger viunieroach	187200	62727	1.50	0.13	0.05	0.16	0.04	0.09	0.23
2729	Augustated	Ottedy	9'451	22	19.10	1.33	0.54	1.58	3.10	0.94	1.13
2730	Bad Satzuflen	Rem	47475	2421	4.47	0.31	0.13	0.37	0.73	0.22	0.26
2731	Bad Salzufen Hotmausen	Moddenbach	5'686	14	18.39	1.28	0.52	1.52	2.99	0.90	1.09
2733	Barrésip	Bentruper Bach	8'896	125	3.21	0.22	0.00	0.26	0.52	0.16	0.19
2736	Blomberg Reelkirchen-Herrentru	Breites Wasser	11166	9	5.80	0.40	0.16	0.48	0.94	0.28	0.34
2736	Bomberg Eschenbruch	N.N.	375	3	5.61	0.39	0.16	0.49	0.91	0.27	0.33
2739	Blamberg, lettup	keruper Bach	3'354	26	5.72	0.40	0.16	0.47	0.93	0.28	0.34
2740	Blomberg Zertraklikravlege	Kingstach	8764	158	3.77	0.26	0.11	0.31	0.61	0.18	0.22
2742 2743	Detroid-Zentral Districtup	Bure	64'666 7'963	292 393	9.95	0.69	0.26 0.05	0.82	1.62	0.49	0.59
2745	Estartal-Airsera	Bega Exter	13500	153	429	0.50	0.12	0.35	0.70	0.21	0.25
2747	Ham-Bad Memberg Horn	Wentede	17/200	91	8.52	0.59	0.24	0.70	1.36	0.42	0.55
2753	Kalarai, Varenticity-Steremen	4	11016	62100	1.00	0.13	0.05	0.16	0.91	0.09	0.11
2754	Kalletal (Langenholzhausen	Yafe	3'001	155	0.67	0.05	0.02	0.07	0.14	0.04	0.05
2755	Lage. Zentralkförwerk	Weste	41981	743	7.49	0.52	0.21	0.62	1,22	0.37	0.44
2759	Lamgo-Grevermarsch	Begs	41370	724	3.74	0.26	2011	0.31	0.01	0.08	0.22
2764	Leopoldshähe, Heigke	Were	7987	995	6.32	0.44	0.18	0.52	1.03	0.31	0.37
2766	Ligde Rischenau	Warrike	2374	ZI	4.01	0.28	0.11	0.33	0.65	0.20	0.24
2707	Ligde Elbrinaen	Mornie Marietenia	2325 4489	184	1897	0.10	0.04	0.12	0.24 3.08	0.07	0.09
2773	Oerlinghausen-Nord Schieder-Schwillerberg	Monkstach Emitter	9105	Y125	1.85	0.13	0.06	1,56	0.30	0.00	0.11
2774	Schlanger	Snothe	8946	122	130	0.23	0.09	0.27	0.54	0.95	0.20
2775	Bad Deynhausen	Were	48'990	4740	8.17	0.57	6.23	0.67	1.33	0.40	0.49
2776	Espekano	Kleine Aus:	22764	62	16.81	1.16	0.47	1.37	2,70	0.81	0.98
2778	Hillo, Harturn	N.N.	17'190	55	14.06	0.98	0.40	1.16	2.28	0.69	0.83
2779	Hallborst Tengern-Wedshorst	Teagemer Bach	13570	75	7.95	0.55	0.23	0.66	1.29	0.39	0.47
2781	Libbecke	Rencessheds	39/300	185	1.55	0.66	0.27	0.79	1.56	0.47	0.57
2782	Mindon, Letets	4	129/340	69/940	2.40	0.17	0.07	0.20	0.39	0.12	0.14
2784 2785	Porta Washinca Motocrpee	N.N.	6962	37	7.74	0.54	0.22	0.64	220	0.38	0.40
J188	Porta Weelfelca, Nammen Rahden	Construction Name Ass	(F36) 11344	96	16.24	1.13	0.46	1.34	1.26 2.64	0.90	0.96
2796	Stemweds Wehderr (T)	N.N.	11328	48	10.57	0.74	0.30	0.87	1.72	0.52	0.63
2797	Harland, 290A	Were	73580	3682	7.07	0.49	0.20	0.58	1.15	0.35	0.42
2798	Rödinghausen, Bruchmühler (reu)	Bennier Graten	9226	1000	1	191000	17.75	17.00	-117.41	1.000	10 (10 7)
2799	Borberg, Highland	Morpe	2'084	33	2.67	0.20	0.08	0.24	0.47	0.14	0.17
2900	Leopoldshöhe, Schuckenbaum (res)	Mittlentach:	11904	.56	8.57	0.67	0.27	0.79	1.00	0.47	0.57
2901	Kalleral, ZKA Kalldorf (heu)	Kalle	9'306	247	2.24	0.16	0.06	0.55	0.36	0.11	0.13
3001	Monster-Gelst	N.N.	10186	44	10.99	0.76	5.31	0.91	1.78	0.54	0.65
3002	Münster Ain Loddenbach	Loddenbert	29781	194	10.18	0.75	0.29	0.84	1.65	0.50	0.60
3003 3005	Münster-Hörup Münster-Höger	Enmedach N.N.	23/483 500	162	13.08	1.35	0.37 0.56	1.08	2.12 3.15	0.64	0.78
3008	Münster-Haupküranlage	N.N.	201/790	881	10.28	0.72	0.29	0.85	1.97	0.90	0.61
3009	Minster-Warlandorf	7805	7866		350,600	974	445	,0000	1.40	W.94	941
3010	Ascheberg	Emmerbach	8804	52	11.25	0.78	0.32	0.93	1.83	0.66	0.67
3011	Aschaborg-Herbern	Dorfbach	4105	24	7.63	0.53	0.22	0.63	1.24	0.37	0.45
3012	Briefbeck	Barkel	9500	64	672	0.47	0.19	0.55	1.09	0.33	0.40
3013	Coesfeld	Borkel	34836	333	6.62	0.47	0.19	0.56	1,11	0.33	0.40
3014	Dülmen	Therpach	34 979	190	9.78	0.68	0.28	0.81	1.59	0.48	0.58
3015	Dülmer-Butchen	NN.	7084	20	11.99	0.83	0.34	0.99	1.95	0.59	0.71
3018	Dilmes-Rorup	Klouterbach Tillionius Room	2503	17	8.63	0.46	0.19	0.55	1.08	0.32	0.39
3019 3020	Havided-Tibed:	Tibacker Bach	290	37	5.21	0.36	0.15	1.05	2.08	0.99	0.31
3020 3023	Havisbedi Lideghausen	Herekerbach Slever	20111	313	10.09	0.70	0.36	0.63	1.64	0.63	0.76
3024	Nordedwe	Teylobbech	950	51	8.45	0.59	0.24	0.70	1.37	0.41	0.90
3026	Naturi-Aggehüten	Slaver	16936	119	7.11	0.49	0.20	0.59	1.15	0.35	0.42
3021	Offen-Vinnum	N.N.	714	7	17.87	1.24	0.51	1.47	2.90	0.88	1.06
3028	Ottes	Lape	97724	12647	4.57	0.32	0.13	0.38	0.74	0.22	0.27
3029	Rosendatii-Osterwick	Variarer Mühlerbach	6,105	59	4.72	0.33	0.13	0.39	0.77	0.23	0.29
3030	Rosendatil Holfwick	Haltwicker Bach	2934	26	5.07	0.35	0.14	0.42	0.82	0.25	0.30
3031	Service	Laubach	18621	52	15.05	1.52	0.46	1.32	2.61	0.79	0.95

			angesolyi,	MMQ (L/s) (horrigiert mit Ahwessermongs, falls EAhwesser >	Berastriagol		Clarithromycin		Metoproiol	Satulal	Softa- methoxazol
A NUMBER	Kläranlagen-/GUES-Nemo	Vorfluter	Einwohner 9'043	MHQ((L/s)	(apt.)	(put)	[pg/L]	(MAC)	[Pg/L]	[pg/L]	[pg/L]
133	Alterberge Erndetter-Austurn	Eschluesbach Eine	35'000	23 4'541	17.86	0.77	0.51	0.91	1.79	0.87	0.65
36	Greven-Reckenfeld	NN	33 174	- 1111	1000	- 10-1		0.000	200	- 0.000	
36	Greven-Schmedehausen	Etingnühlenbach	157	227	0.03	0.00	0.00	0.00	0.01	0.00	0.00
137	Hörstel	lbbenbürener Aa	18'909	718	4.36	8.30	0.12	0.36	0.71	0.21	0.26
08 09	Hopsten Schale Hopsten	N.N. Glegel Azı	5169	14	16.07	1.12	0.45	1.33	2.61	0.79	0.96
341	Horstman Leer	Leedsach	57680	28	9:11	0.03	0.26	0.75	1.48	0.45	0.54
144	Ibbenbüren Püssebüren	littenbütener Aa	49534	209	10.95	0.76	0.31	0.90	1.78	0.54	0.65
045	Ladeger	Lengericher Ao Bach	4'801	158	8,99	0.63	0.25	0.74	3.46	0.44	0.53
147	Laer	Ewaldback	57906	40	6.56	0.46	0.19	0.54	1.07	0.32	0.39
46	Lengerich	Lengericher As Bach	27/900	144	8.36	0.58	0.24	0.09	1,36	0.61	0.50
MD	Lienen-Hatlenvenne Lienen-Höster Mark	NN.	1300	37	19.40	135	0.55	0.01	3.15	9.95	0.01
060	Lotte	Glanebach Hischebach	3195	- 12	0 10 2 60	0.01	0.00	0.23	0.02	0.00	0.17
052	Lota-Wersen	Plan	8000	564	0.68	0.05	0.02	0.00	0.11	0.03	0.04
163	Melelex	Vector	6481	110	4.40	0.31	0.13	0.37	0.73	0.22	0.27
54	Metingen	Speller An	12050	73	6.18	0.43	0.18	0.51	1.00	0.30	0.37
705	Neuerkird en/Wettingen	Distribut	26.327	85	13.95	0.90	0.40	1.15	2.27	0.66	0.83
67	Nordvolde	Ereditioner Muhambach	10'505	26	18.35	1.26	0.52	1.51	2.58	8.90	1.09
68 69	Ochthup Redox	Kahriobibady N.N.	17'987 9'950								
961	Rhama-Nort	NA.	77900								
162	Swirtneck	Ema	6965	4'442	10.89	0.76	0.31	0.90	1.77	0.53	0.45
163	Steinfurt-Borghorst-Sürl	Kahlerbach	7812	53	6.63	0.46	0.19	0.55	1.06	0.32	0.39
164	Steinfurt-Burgareinfurt	Steinfurtur Au	14794	200	7.58	0.53	0.21	0.62	1.25	0.37	0.45
965	Sterifurt-Borghanst-Nord	Klinderbach	11719	62	8.45	0.59	0.24	0.70	1.37	0.41	0.50
068 068	Tacilianturg-Leiden Tacilianturg-Leide	Frightsbach (bbordunarer Aa	1988	11	7.29 3.78	0.51 0.26	0.21	0.80	1.15 0.61	0.36	0.43
160	Westerkappels-Velpe	Hischebach	1'865	37	2.26	0.16	0.09	0.19	0.01	0.10	0.13
070	Westeruspen	Düsterdisker Ala	6750	18	16.67	1.16	0.47	1.37	2.71	0.62	0.99
071	Atles-Statt	Kleine Otto	48996	287	9.27	0.65	0.28	0.76	1.51	0.45	0.55
078	Beckum-Naubeckum	Algú	12390	94	5.50	0.41	0.17	0.49	0.96	5.29	0.35
077	Seckum	Worse	22978	157	6.58	0.46	0.19	0.54	1.06	6.32	0.39
076 079	Bedwi Drensteinfart	Autbach Worse	4998 10'246	204 445	7.66 8.30	0.53 0.58	0.22	0.63	1.25	0.38	0.49
160	Dransteinflyt-Rinkerode	Raggerbach	2847	16	8.25	0.5T	0.21	0.68	1.34	0.40	0.49
181	Entigator	Sestarbodi	14259	111	9.76	0.40	0.19	0.47	0.99	0.26	0.34
184	Exsignation-Westkirchen	Westkircheser Bach	3/842	41	4.24	0.30	0.12	0.35	0.68	0.21	0.25
068	Exerowhitel	Hagenback	9480	57	7/45	0.52	0.21	0.61	1.21	0.36	0.44
067	Oelde	Autbach	29983	121	11,13	0.77	0.32	0.92	1.81	0.54	0.98
188 190	Ostbevern Sassenberg	Bever Hessel	8'837 7'500	277 268	1.56 6.03	0.14	0.06	0.16	0.32	0.10	0.12
76V 191	Sassenberg Füchtorf	Bever	3/166	198	672	0.05	0.02	0.06	0.12	0.04	0.04
993	Sendenhorst	Aldebace	12336	42	14.23	0.99	0.40	1.17	2.31	0.70	0.84
096	Telgiz	Ere.	197397	2579	9.72	0.68	0.28	0.80	1.58	0.48	0.50
196	Wadersloh	Liese	10'255	58	7.90	0.55	0.22	0.95	1.29	0.39	0.47
097	Warendorf	Helegraben	32791	20211						161	
099 301	Waterdorf-Roebnar	Weninger Bach	14630	27	185	0.18	0.07	0.22	0.42	0.13	0.13
106	Lonnestadt Grevenbrück Onsistrogen Bleche	Lorae Kaummentau	137	13	3.16	0.10	0.06	0.26	0.36	0.15	0.19
108	Firmentrop	Lenne	12 157	4162	1.47	0.10	0.04	0.12	0.24	0.07	0.09
910	Kirchhordern Oberhundern	Hundern	11034	15	5.01	0.35	0.54	0.45	0.81	0.25	0.30
311	Lernestadt	Leces	25 426	719	2.52	0.18	0.07	0.21	0.41	0.12	0.15
912	Lennestad Bilatein	Veischede	2303	59	2.35	0.16	0.07	0.19	0.38	0.12	0.14
317	Olge Altenkleusheim	Olow	177	5 23	7.63	0.53	0.22	0.63	1.24	0.37	0.45
101 102	Oljes Oberverschede Wenden	Varichede Bigge	18922	154	150 5.73	0.11	0.04	0.13	0.95	0.07	0.09
103	Bad Berleburg-Aue	Edw:	37000	427	1.14	0.06	0.03	0.09	0.19	0.06	19.0
124	Sad-Berkdung	Odeborn	8256	241	1.55	0.11	0.04	0.13	0.25	0.06	0.09
Q5	Bad Berkburg Beddelhausen	58er	4'964	808	1.39	0.10	0.04	0.11	0.23	0.07	0.08
126	Bed Berleburg Roomland	Eder	31646	773	1.33	0.00	0.04	0.11	0.22	0.00	0.08
126 129	Burtiach Lippe	Bachheller	508	4	6.50	0.44	0.18	0.52	1.03	0.31	0.37
130	Emilletraeck Emilletraek Rosepe	Eder Eder	5/549 1/881	106	2.58 1.28	0.18	0.07	0.10	0.41	0.12	0.15
351 351	Freudenberg-Lindenberg	Lederbuch	802	2000 B	6.48	D.45	0.18	0.53	1.05	0.32	0.07
333	Freuderberg	Audorfer Bach	14918	125	5.27	0.37	0.15	0.43	0.88	0.26	0.21
334	Hichenback Ferndorfall	Ferndorfback	16131	160	5.10	0.36	0.14	0.42	0.63	0.25	0.30
35	Hichenhach Lützel	Lütwitech	442	2	12:53	0.87	0.36	1,03	2.03	0.61	0.74
36	Kreuttal	Forndorfbach	24719	416	4.62	0.32	0,13	0.38	0.75	0.23	0.27
337 341	Kreuzsal Buschhalton Natcher-Deuz	Forndorflach Sieg	7°396 8'090	472 120	4.78 3.04	0.38 0.21	0.14	0.25	0.78	0.23 0.15	0.28
941 342	Nether-Desc Nether	Seg	7'896	188	3.04	0.28	0.11	0.25	0.64	0.15	0.18
43	Neghes-Edvisninhausen	Draisbach	3'206	35	4.08	0.28	0.12	0.34	0.66	0.20	0.24
45	Neipher-Solitach	Netphe	123	- 6	1.18	0.08	0.03	0.10	0.19	0.06	0.07
46	Neighen Athoriterbach	Notphe	302		1.50	0.09	0.04	0.11	0.21	0.06	0.68
47	Sagen	Seg	53/630	1'408	8,65	0.39	0.96	0.47	0.92	0.28	0.34
48	Siegen-Weidenau	Seg	38745	904	5.30	0.37	0.15	0.44	0.87	0.26	0.32
M9 60	Winsdorf Niedersleifen Winsdorf Rinsdorf	Welfi Eisenbach	14'105 5'964	84	7.54 5.28	0.52 0.37	0.21	0.62	122	0.37	0.45
61 61	Siggetal	Egge Egge	55753	1'854	2.01	0.14	0.06	0.44	0.33	0.10	0.31
001	Herscheid Vogelsang	Schwarze Alte	37	30	0.26	0.02	0.01	0.02	0.04	0.01	0.02
102	Herscheid Schöneberke	Schwarze Alte	29	24	0.26	0.02	0.01	0.02	0.04	0.01	0.02
108	Meinerzhagen Lengelscheid	Wiebelssat	140		6.29	0.44	0.98	0.52	1.02	0.01	0.37
104	Meinerzhagen Wortscheld	Wortscheider Bach	200		2.00	0.14	0.06	0.16	0.32	0.10	0.12
06	Meinerzhagen Eliberg	Wesebach	59	5	0.49	0.03	0.01	0.04	0.04	0.02	0.93
714	Schalkamähle Wilkieln	N.N.	209	. 1	430	p. 700	D and	p na	0.71		0.75
Q1 Q4	Obertrelinghausen Hommerich	NA Sec	81	473	148	0.10	0.12	0.36	0.71	0.07	0.26
es 000103	Rhein, WkSi Süd/Bad Honnel	Rhein	2,41	941'000	1.56	0.10	0.04	0.13	0.25	0.08	0.09
me_000152	Rhein, Bad Godesberg	Rhein		941'000	1,56	0.11	0.04	0.13	0.25	0.08	0.09
en_000220	Rhein, Sürzelberg	Rhein		970/000	170	0.12	0.05	0.54	0.28	0.08	0.10

NA MURRER	Klärenlagen-/GUES-Name	Vorfluter	angeschi. Einsohner	MNG (L/s) (korrigiert mit Abwessermenge, talle ZAbwesser > MNG) (L/s)	Benzotriszoi (µg/L)	Carbemezepin Beşti	Clarithromycin [µg/L]	Diciolenac [µg/L]	Metoproiol [µg/L]	Sotalel [µg/L]	Sulfa- methoxazol [µgl.]
gues_000309	Rhein, Düsseldorf-Flehe	Rhein	-	970/000	1.70	0.12	0.05	0.14	0.28	0.08	0.10
gues_000504	Rhein, WikSt Nord Kleve-Birmen	Rhein		110501000	1.95	0.14	0.04	0.16	0.32	0.10	0.12
yuas_000553	Lobits	Shan		1'050'000	1.95	0.14	0.06	D.16	0.32	0.10	0.12
gues_001004	Sieg, Menden	Sieg		67790	5.51	0.38	0.16	0.45	0.90	0.27	0.33
gues_002008 gues_003001	Wupper Oplacen	Wupper Erft		5/120 10/100	5.09 2.20	0.35	0.14	0.42	0.83 0.36	0.25	0.30 0.13
gues_004005	Erft, Eppinghovan Ruhr, Mündung	Rybr		11796	6.96	0.48	0.20	0.57	1.13	0.34	9.41
yues 004108	Ruhr, Fronderberg	Ruhi		6430	2.83	0.20	0.08	0.23	0.46	0.14	0.17
jues_004157	Hatingen	Ruhi		18'600	3.47	0.24	0.10	0.29	0.56	0.17	0.21
pues 005009	Errecher, Windung	Erradier		10820	8.41	0.59	0.24	0.69	1.37	0.41	0.50
gues_000002	Lippe, Wiesel	Lippe		17700	4.55	0.32	0.13	0.38	0.74	0.22	0.27
gues_022810	Ruhr, Mühaes-Kahlenberg	RAI .		18'500	4.41	0.31	0.53	0.36	0.72	0.22	0,26
gues_107687	Rur, Vlodrop	Rur		11900	3.92	0.27	0.11	0.32	0.64	0.19	0.23
gues 137200	BEI KLEN-VERNICH	Erft		388	10.25	0.71	0.29	0.85	1.65	0.50	0.61
gues_137315	ah Mdg Rothach	Eff.		971	11.44	0.80	0.32	0.94	1.85	0.56	0.68
jues_200100	Agger, Troisdorf StrBricke	Agger		2400	5.29	0.36	0.15	0.43	0.84	0.25	0.31
gues_212350	Sieg. StrBritishe in Au	Sing		3'280	5.00 12.98	0.35	0.14	1.07	2.11	0.24	0.30
gues_295901 gues_273600	Pagel Walters wist Dhann, uh. Mutzb. oh. Mitg. Wupper	Swistbach Ohim		260 - 812	12.98	0.11	0.04	0.13	0.25	0.04	0.77
gues 213000 gues 300238	Kolkflather Bricke	Wapper		4/520	4.11	0.11	0.12	0.13	0.67	0.20	0.24
gues 315321	Nors, bei Kessel	Nors		3'320	9.78	9.68	0.12	0.81	1.59	0.48	0.58
gues 318644	Schwalm, uh. Freibad (NL)	Schwalm		890	4.57	0.35	0.14	0.41	0.81	0.24	0.29
gues_416204	Mühne, xor Mdg. in die Ruhr	Milhne		655	3.77	0.26	0.11	0.31	0.61	0.18	0.22
gues_417002	V MDG I D RUHR	Honne		698	3.57	0.28	0.11	0.33	0.65	0.19	0.24
gues_422800	Lenne, Pegal Hotenlimburg	Lette		81510	1.67	0.12	0.05	0.14	0.27	0.08	0.10
gues_441200	Voline, vor Mdg. Ruhl	Volme		1'320	5.17	0.36	0.15	0.43	0,84	0.25	0.31
gues_443104	AM PEGEL HASPE	Ennepe		600	5.25	9.37	0.15	0.43	0.85	0.26	0.31
gues_451400	Sieg, Landesgrenze	Seg		1:457	5.64	0.39	0.16	0.47	0.92	0.28	0.33
gues_463309	Eder, Landesgranzo	Eder		853	1.20	0.08	0.02	0.10	0.20	0.06	0.07
gues_501580	Stever, uh. KA Haltem	Stever		626	10.24	-0.71	0.29	0.84	1.96	0.50	0.61
gaes_503254	UH HARKORTSEE	Rulti		18100	3.00	0.21	0.09	0.25	0.50	0.15	0.18
gues_503708	UH HATTINGEN	Ruhi		18'800	4.20	6.00	8,00	0.00	0.00	0.00	0.00
gues_517800 gues_602700	Ahse, vor Mdg Lippe Alme, vor Mdg Lippe	Ahse Airre		1'090	8.60	0.29	0.12	0.35	1.40	0.21	0.25 0.51
gues 614208	Lippe Lippborp	Lippe	_	6'850	2.86	0.20	0.08	0.24	0.47	0.14	0.17
gues_702705	Weser, Pegel Porta	Weser		67700	2.36	0.16	0.07	0.19	0.38	0.12	0.14
gues_723502	Lutter, vor Mag. Eme	Luter		364	9.01	0.63	0.26	0.74	1.46	0.44	0.53
gues_731808	Werrs, uh. KA Bad Oeynhausen	Werte		4720	8.22	0.57	0.23	0.68	1.33	0.40	0.49
gues_735012	Bega, StrBräcke Hoelsen	Bega		1140	2.60	0.18	0.07	0.21	0.42	0.13	0.15
gues 740706	Johannisbach, vor Mdg. Werre	Johannistach		1184	10.06	0.70	0.29	0.83	1.63	0.49	0.60
gues_741917	Else, utr. KA Kirchlengerri	Else		684	14.35	1.00	0.41	1.18	2.33	0.70	0.85
gues_745900	Diemel, uh. KA Warburg	Diemel		301	18.47	1,28	0.52	1.52	3.00	0.90	1.09
gues_749618	Nethu, r. Am uh. Ameluroun	Netw		1700	1.39	0.10	0.04	0.11	0.23	0.07	0.08
gues_752824	Emmer, vor Mdg, der Woennie	Enther		1'070	1,94	0.14	0.06	0.16	0.32	0.10	0.12
gues_755813	Große Aue, Landesgrenze	Große Aue		144	14.35	1.00	0.41	1.18	2.33	0.70	0.85
gues_800018	Vechte, oh. Steinfurter An	Vector to		225	5.78 9.44	0.40	0.16	0.48	0.94	0.28	0.34
gues_800703 gues_800703	Steinfurter Aa, vor Mdg. Vechte Berkel, Landeagranze	Steinfurter Aa Berkel		298 628	7.58	0.66	0.27	0.78	1.53	0.46	0.45
gues_801552	9:20 Fichteiner Withe -	Staval		252	3.30	0.23	0.09	0.27	0.54	0.16	0.20
jues 803157	Erre, Einen	Ems		2550	9.16	0.64	0.26	0.70	1.49	0.45	0.54
gues 803510	Werse, ut. Haviothorster Mühle	Warse		444	10.01	0.70	0.28	0.83	1.63	0.49	0.59
jues_804411	MZ sh Wostobach	Münstersche Aa		52	9.19	0.64	0.26	0.76	1.49	0.45	0.54
pues_805180	Erra, uh. KA Rheine-Nord	Erris		5'010	9.70	0,68	0.28	0.80	1.58	0.48	0.58
9097MNQ	MNQ Messelele unerhalb Warendorf	Ema		2'076	10.48	0,73	0.30	0.86	1.70	0.51	0,62
339VNQ	MNO Messatello untar Versinold	Aabach		102	9.61	9.67	0.27	0.79	1,56	0.47	0.57
0061MWQ	MNO Messitelle unter Rheine-Nord	Ens		5714	9.52	0.06	0.27	0.79	1.55	0.47	0.54
038WN2	MHQ Messalwile unter. Hopeten-Schale	Schalor Asi		128	5.17	0.36	0.15	0.43	0.84	0.25	0.31
9059MNQ	MNO Messatelle unter Recke	Spellet Aa (Hopstener Aa, Re		119	10.10	0.70	0.29	0.83	1.64	0.49	0.60
3058WWQ	MNO Messelle unter Ochtrup	Fartback South Book	_	86 43	8.95 18.07	1.26	0.25	1.49	1.45	0.44	1.07
155VINQ 2149VINQ	MNO Messatelle unter Wassenberg MNO Messatele unter Nedericitation-Overhe	Saaler Badh da Schanler		794	0.87	0.05	0.02	1.4V 0.07	0.54	0.04	0.05
2149WWQ 2142WWQ	MNQ Mesastelle unter Brüggen	Schwalm		700	4.96	0.35	0.14	0.41	0.81	0.24	0.09
2129MWQ	MNQ Messalele unter Straelen	Ners		1913	11.82	0.82	0.14	0.97	1.92	0.58	0.29
1873WWQ	MNQ Messstelle unter Wermelskirchen	Erlgenbach		96	7.92	0.55	0.22	0.65	1.29	0.39	0.47
2133WNQ	MNQ Messalale unter, Grevenbroich	Erft		9480	2.34	0.16	0.07	0.19	0.38	0.11	0.14
391MNQ	MNO Nessatelle unter Borchen, Nordbord			3/552	0.87	0.06	0.02	0.07	0.14	0.04	0.05
2540MNQ	MNQ Messatelle unter Börren	Seseke		290	6.75	0.47	0.19	0.66	1.10	0.33	0.40
2784MPAQ	MNQ Wesstelle unter Porta Westfalica N			12458	9.62	0.67	0.27	0.79	1,56	0.47	0.57
2798WNQ	MNO Messatulia untar. Rüdinghauson, Stuctiv			243	10.09	0.70	0.29	0.83	1.64	0.49	0.60

ANHANG 6: KURZCHARAKTERISIERUNG DER MODELLIERTEN SUBSTANZEN

Benzotriazol (Industrie- und Haushaltschemikalie)

<u>Anwendung:</u> Benzotriazol wird als Korrosionsschutz in Spülmittel, Kühlflüssigkeiten, Frostschutzmitteln und Enteisungsmitteln eingesetzt (Hinterbuchner 2006).

<u>Wirkungsweise:</u> Starke Komplexbildung mit Metallen. Die physiologischen Wirkmechanismen sind derzeit nicht genau geklärt (Hinterbuchner 2006).

<u>Verwendetes Qualitätskriterium:</u> 10 μg/L als Präventivwert des LANUV, das ökotoxikologische Qualitätskriterium liegt bei 30 μg/L (http://www.oekotoxzentrum.ch/qualitaetskriterien)

Carbamazepin (Antiepileptikum und Antidepressivum)

Anwendung: Carbamazepin wird als Anti-Epileptikum und zur Behandlung von affektiven Störungen eingesetzt. Das trizyklische Dibenzazepin-Derivat Carbamazepin wurde 1957 synthetisiert und gehört heute zu den wichtigsten und am meisten verwendten Antiepileptika. (Mutschler 1996, Schwabe und Pfaffrath 2003). Darüber hinaus findet es breiten Einsatz als Stimmungsaufheller und Antidepressivum.

<u>Wirkungsweise:</u> Der Wirkmechanismus ist noch nicht vollständig geklärt. Es wurde gezeigt, dass Carbamazepin spannungsabhängige Natriumkanäle in den Axonen der Nervenzellen blockiert (e.g. Willow et al., 1983).

<u>Verwendetes Qualitätskriterium:</u> 0,5 μg/L (LAWA) und Oekotoxzentrum (http://www.oekotoxzentrum.ch/qualitaetskriterien)

Clarithromycin (Antibiotikum)

<u>Anwendung:</u> Clarithromycin ist ein Makrolidantibiotikum, welches bei der Behandlung von Infektionen der Atemwege der Mandeln des Magens und der Haut eingesetzt wird.

<u>Wirkungsweise:</u> Clarithromycin bindet an die bakterielle 50s Ribosomen Untereinheit und unterbindet die Proteinbiosynthese.

<u>Verwendetes Qualitätskriterium:</u> 0,06 μg/L Oekotoxzentrum (http://www.oekotoxzentrum.ch/qualitaetskriterien)

Diclofenac (Schmerzmittel)

<u>Anwendung:</u> Diclofenac ist ein nicht steroidaler entzündungshemmender Wirkstoff (NSAID) und in Arzneimitteln enthalten, welche als Analgetikum, Antirheumatikum und Antiphlogistikum eingesetzt werden (Mersmann 2003).

<u>Wirkungsweise:</u> Als amphiphile Säure bindet Diclofenac an Zellmembranen und hemmt die Synthese von Prostaglandinen (Schwaiger 2004, Kuschinsky und Lüllmann1981). Verantwortlich für diese Wirksamkeit ist eine Inhibition der Cyclooxygenasen (COX-1 und COX-2), so dass

diese keine entzündungsfördernden Prostaglandine mehr herstellen können. Möglicherweise ist Diclofenac direkt am Lipoxygenase-Stoffwechsel beteiligt und unterdrückt die Bildung von Leukotrienen.

Verwendetes Qualitätskriterium: 0,1 μg/L (LAWA) und Vorschlag der EU-Kommission zur WRRL 2012. Gemäss dem EQS Dossier (prepared by the Sub-Group on Review of the Priority Substances List (under Working Group E of the Common Implementation Strategy for the Water Framework Directive, http://circa.europa.eu/Public/irc/env/wfd/library?l=/framework_directive/thematic_documents/priority_substances/supporting_substances/eqs_dossiers&vm=c_ompact&sb=Version) aufgenommen in: "Vorschlag für eine RICHTLINIE DES EUROPÄISCHEN PARLAMENTS UND DES RATES zur Änderung der Richtlinien 2000/60/EG und 2008/105/EG in Bezug auf prioritäre Stoffe im Bereich der Wasserpolitik" Brüssel, 31.01.2012 (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0876:FIN:DE:PDF).

Metoprolol (Beta-Blocker)

<u>Anwendung:</u> Metoprolol wird bei Herzrhythmusstörungen, insbesondere supraventrikuläre Tachyarrhythmien, Hypertonie oder bei bestätigtem oder vermutetem Myokardinfarkt angewendet (http://www.kompendium.ch, Zugriff am 23/07/2010).

<u>Wirkungsweise:</u> Metoprolol ist ein relativ selektiver β-Adrenorezeptorenblocker, vor allem werden β₁-Adrenorezeptoren blockiert, die sich überwiegend im Erregungsbildungs- und Leitungsgewebe des Herzens (Sinusknoten, Vorhöfe, AV-Knoten, Kammermuskulatur) befinden. Es senkt damit die Erregungsleitungsgeschwindikeit, die Schlagfrequenz und die Kontraktionskraft des Herzens, was eine Blutdrucksenkung bewirkt. Metoprolol besitzt keine stimulierende Wirkung auf das Nervensystem (http://www.drugbank.ca/drugs/DB00264, Zugriff am 26/7/2010).

Verwendetes Qualitätskriterium: 7,3 µg/L (LANUV)

Sotalol (Beta-Blocker)

Anwendung: Sotalol ist ein nichtselektiver beta-Adrenorezeptoren Antagonist (Blocker), der bei Herzrhythmusstörungen, bzw. bei sinusalen und supraventrikulären Tachykardien eingesetzt wird und bei der Behandlung und Prophylaxe lebensbedrohender oder prognostisch ungünstiger ventrikulärer Arrhythmien sowie bei Vorhofflattern und -flimmern. Ebenfalls wird Sotalol, bei Arrhythmien aufgrund einer Kohlendioxyd-Akkumulation, exogener Katecholamine, einer Narkose bzw. eines Myokardinfarkts, die auf die übliche Behandlung nicht reagieren, eingesetzt (Zusammenstellung aus: http://www.kompendium.ch)

<u>Wirkungsweise:</u> Sotalol ist ein hydrophiles Klasse III-Antiarrhythmikum und ein ausgeprägter Beta-Rezeptorenblocker. Die Klasse III-antiarrhythmische Wirkung beruht auf einer akut einsetzenden Verlängerung der terminalen Phase des monophasischen Aktionspotentials ohne

Beeinflussung der Leitungsgeschwindigkeit. Die absolute Refraktärzeit wird verlängert. (Zusammenstellung aus: http://www.kompendium.ch)

<u>Analytik:</u> Eine derzeitige Nachweisgrenze (LOD) kann mittels SPE-HPLC–MS/MS mit 3,9 ng/L für Abwässer und Oberflächengewässer angegeben werden (Santos et al. 2010). Da sowohl Sotalol, als auch das Sotalol-Hydrochlorid Anwendung finden sollten beide Substanzen für ein Monitoring, bzw. die dissoziierten Formen, berücksichtigt werden.

<u>Verwendetes Qualitätskriterium:</u> unzureichend Daten für eine Herleitung (LAWA 2006) und Oektoxzentrum 2011 (http://www.oekotoxzentrum.ch/qualitaetskriterien), es wurde der LANUV Präventivwert von 0,1 µg/L verwendet.

Sulfamethoxazol (Antibiotikum)

Anwendung: Sulfamethoxazol wird als Antibiotikum eingesetzt (BLAC 2003, Forth et al. 1983).

<u>Wirkungsweise:</u> Sulfamethoxazol wirkt bakteriostatisch gegen grampositive und gramnegative Bakterien. Der Wirkungsmechanismus beruht auf einer Beeinflussung der bakteriellen Folsäure-Synthese. Es wirkt als Antagonist der p-Aminobenzoesäure und verdrängt diese kompetitiv (Forth et al. 1983, ARGE Elbe 2003).

<u>Verwendetes Qualitätskriterium:</u> 0,15 μg/L (LAWA). Qualitätsnorm-Vorschlag <u>http://webetox.uba.de/webETOX/public/basics/stoff/ziel.do;jsessionid=6BE51B9B4BF911A8290</u> AF71F1FAA9DEF?stoff=6343

Referenzen:

ARGE Elbe (2003): Arzneistoffe in Elbe und Saale. In: http://www.arge-elbe.de/wge/Download/Berichte/03Arzn.pdf.

BLAC (2003): Bericht an die 61. Umweltministerkonferenz (UMK) am 19./20. November 2003 in Hamburg. In: http://blak-uis.server.de/servlet/is/2146/P-2c.pdf.

Forth W, Henschler D, Rummel W (Hrsg.) (1983): Allgemeine und spezielle Pharmakologie und Toxikologie. 4. Aufl. Wissenschaftsverlag, Bibliographisches Institut, Mannheim 1983.

Hinterbuchner (2006): Das Verhalten von Benzotriazolen in Abwasserreingungsanlagen. Diplomarbeit eingereicht an der Fachhochschule Wels zur Erlangung des akademischen Grades Diplom-Ingenieur (FH).

Kuschinsky G, Lüllmann H (1981): Kurzes Lehrbuch der Pharmakologie und Toxikologie. 9. Auflage, Georg Thieme Verlag Stuttgart, New York.

Mersmann P (2003): Transport- und Sorptionsverhalten der Arzneimittelwirkstoffe Carbamazepin, Clofibrinsäurem Diclofenac, Ibuprofen und Propyphenazon in der wassergesättigten und – ungesättigten Zone. Dissertation TU Berlin.

Mutschler E (1996): Arzneimittelwirkungen- Lehrbuch der Pharmakologie und Toxikologie. Stuttgart, Germany, Wissenschaftliche Verlagsgesellschaft mbH. 1-991.

Schwabe U und Pfaffrath D (2003): Arzneiverordnungsreport 2002. Aktuelle Daten, Trends, Kosten und Kommentare. Berlin, Heidelberg. Springer-Verlag.

Schwaiger J, Ferling H, Mallowa U, Wintermayr H, Negele R D (2004): Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology 68:141–150.

Willow M, Kuenzel E A, Catterall A W (1983): Inhibition of voltage-sensitive sodium channels in neuro-blastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Molecular Pharmacology 25: 228-234.