GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswassereinleitungen

Projektphase I

- Abschlussbericht -

Aktenzeichen
IV – 9 – 042 258

Im Auftrag des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen

November 2006

Fachbereich Bauingenieurwesen
Prof. Dr.-Ing. M. Uhl
Corrensstraße 25
48149 Münster

Labor für Wasserbau und Wasserwirtschaft
GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswassereinleitungen

4.2.4 Aufbereitung der NIKLAS-KOM Daten ... 57
4.2.5 Aufbereitung der NIKLAS-IGL Daten ... 57
4.2.6 Ermittlung der Trenngebiete- und Straßenflächen ohne Behandlungsanlagen und deren Einleitungsabflüsse .. 58
4.2.7 Ermittlung geschlossener Siedlungsgebiete ... 59
4.2.8 Ermittlung der hydraulischen Belastung ... 60
4.2.9 Ergebisdarstellung und Aggregation zu Wasserkörpern nach der WRRL 62
4.2.10 Schlussfolgerungen für die Bewertungsmethodik ... 64

5 Zusammenfassung ... 65

Anlagenverzeichnis

Anlage 2.1 Besprechungsprotokolle
Anlage 3.1 Bewertungsmethodik GISBREIN
Anlage 3.2 Straßenflächen im Einzugsgebiet der Nette und des Wahnbachs
Anlage 4.1 Übersichtsplan Gewässerabschnitte - Testgebiet Rotbach
Anlage 4.2 Ergebnisse der ATKIS-Verschneidungen bei Verwendung korrigierter Flächendaten – Testgebiet Rotbach
Anlage 4.3 Hydraulische Bewertung der N-Einleitungen – Testgebiet Rotbach
Anlage 4.4 Übersichtsplan Gewässerabschnitte - Testgebiet Eschbach
Anlage 4.5 Ergebnisse der ATKIS-Verschneidungen bei Verwendung korrigierter REBEKA-Daten – Testgebiet Eschbach
Anlage 4.6 Hydraulische Bewertung der N-Einleitungen – Testgebiet Eschbach
Anlage 4.7 Ergebnisdarstellung mit korrigierten REBEKA-Daten – Testgebiet Eschbach
1 Einleitung

Daher soll eine GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswassereinleitungen in NRW durchgeführt werden. Dazu ist eine Methodik zu entwickeln, die sich an der Datenverfügbarkeit und der Automatisierbarkeit orientiert.

Für die Erstellung der Bewertungsmethodik werden zunächst vorhandene Bewertungsansätze für die Beurteilung der hydraulischen Belastung von Gewässern (Abschnitt 2.1) und Ansätze für Regionalisierungsverfahren zur Bestimmung von Hochwasserkennwerten (Abschnitt 2.2) auf ihre Anwendbarkeit hin untersucht. Aufbauend auf dieser Untersuchung wird die Bewertungsmethodik (Kapitel 3) in einem iterativen Prozess entwickelt und auf die Testgebiete (Kapitel 4) angewendet. Für die Umsetzung der im Projekt entwickelten Bewertungsmethodik wurde die weit verbreitete GIS-Plattform ArcGIS 9.1 der Firma ESRI verwendet.

Die notwendigen Iterationsschritte für die Bewertungsmethodik ergeben sich zum einen aus der Überprüfung der Programmierbarkeit von Berechnungsalgorithmen und den Anwendungen auf die Testgebiete. Einzelne Iterationsschritte der Methodik sind in diesem Bericht nicht mit dargestellt.
2 Grundlagen

2.1 Ansätze zur Bewertung von Niederschlagswassereinleitungen

Nachfolgend wird eine Übersicht über bisherige Ansätze zur Bewertung von Niederschlagswassereinleitungen gegeben. Die Übersicht beschränkt sich dabei auf die wesentlichen Inhalte, die im Zusammenhang mit diesem Projekt von Bedeutung sind.

In der Übersicht wird zunächst auf ein Projekt eingegangen („Main-Projekt“) bei dem eine Bewertung von Niederschlagswassereinleitungen mit GIS-Methoden erfolgt ist.

Die Folgerungen aus den bisherigen Ansätzen für die Bewertungsmethodik werden in Abschnitt 2.1.7 aufgeführt.

2.1.1 „Main-Projekt“

Für die Umsetzung der EU-Wasserrahmenrichtlinie wurde ein Verfahren entwickelt (MIGGE/WALTER 2003), um die hydraulische Belastung durch Misch- und Regenwassereinleitungen in Fließgewässern mit den verfügbaren Daten und üblichen GIS-Methoden zu bewerten. Das Verfahren beruht auf folgenden Annahmen:

Bezugsraum:
Für das Verfahren ist zunächst eine Abgrenzung des zusammenhängenden Wirkungsgebietes (Bezugsraum) erforderlich. Dies ist der Bereich eines Fließgewässers, an dessen Grenzen der hydraulische Stress durch Misch- und Regenwassereinleitungen abgebaut ist und keine Überlagerung mit ober- oder unterhalb liegenden Einleitungen auftritt.

Signifikanzkriterium:
Von den beteiligten Bundesländern (Baden-Württemberg, Bayern und Hessen) wird eine hydraulische Gewässerbelastung durch den Einleitungsabfluss (Q_{ein}) als signifikant eingeschätzt, wenn folgendes Signifikanzkriterium erfüllt ist:

$$Q_{ein} > HQ$$

Da die HQ_1-Werte in den einzelnen Bundesländern jedoch nicht flächendeckend verfügbar sind, werden die in Tabelle 2.1 aufgeführten Vereinfachungen zur Ermittlung der HQ_1-Werte genutzt, die unterschiedlich für die einzelnen Bundesländer sind.
Tabelle 2.1 Signifikanzkriterien der Länder Baden-Württemberg, Bayern, Hessen (MIGGE/WALTER 2003)

<table>
<thead>
<tr>
<th>Land</th>
<th>Signifikanzkriterium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>$Q_{\text{ein}} > HQ_1 = 0.8 \cdot HQ_2$</td>
</tr>
<tr>
<td>Bayern</td>
<td>$Q_{\text{ein}} > HQ_1 = 10 \cdot MQ$</td>
</tr>
<tr>
<td>Hessen</td>
<td>$A_u/A_E > 1 \text{ ha/km}^2$</td>
</tr>
</tbody>
</table>

1) Es gilt auch $Q_{\text{ein}} > HQ_1$, wobei als Hochwasserspende $HQ_1 = 1.0 \text{ l/(s·ha)}$ und als Regnenspende $r_{15,1} = 100 \text{ l/(s·ha)}$ angesetzt wird und sich das Signifikanzkriterium damit entsprechend vereinfacht.

Das Signifikanzkriterium geht damit davon aus, dass die Spitzen der Regenwassereinleitungen voreilen und sich daher nicht mit den Hochwasserspitzen aus dem natürlichen Einzugsgebiet überlagern.

Ermittlung der Einleitungsmengen

Die Ermittlung der vorhandenen hydraulischen Belastung erfolgt durch folgenden Ansatz für den Einleitungsabfluss Q_{Ein}. Die Siedlungsfläche wird dabei aus den GIS-Daten der CORINE-Landcover oder ATKIS ermittelt.

$$Q_{\text{ein}} = A_{\text{Siedl}} \cdot \psi \cdot r_{15,1}$$

mit:
- A_{Siedl} = Siedlungsfläche [ha]
- ψ = Abflussbeiwert (pauschal $\psi = 0.3$)
- $r_{15,1}$ = Niederschlagsspende $r_{15,1} = 100 \text{ l/(s·ha)}$

Fazit:

Es zeigt sich, dass der Ansatz aus dem „Main-Projekt“ starke Vereinfachungen beinhaltet. So weisen schon MIGGE/WALTER (2003) auf folgende Problempunkte hin:

- Die Abgrenzung des Bezugsraums insbesondere bei den dicht besiedelten Gebieten in Hessen ist problematisch.
- Die unterschiedliche Ermittlung des HQ_1-Wertes führt bei Vergleichsgebieten zu einer unterschiedlichen Ausweisung von signifikanten Gewässerbelastungen.
- Regenwasserüberleitungen aus Einzugsgebieten können mit dem Verfahren nicht berücksichtigt werden.

Zusätzlich ist noch auf folgende Konsequenzen der Vereinfachungen einzugehen:
GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswasserleitungen

- **Bezugsraum**: Mit dem Vorgehen kann keine Betrachtung von kleinräumigen Einheiten stattfinden. Insbesondere kleine Gewässer, die sich innerhalb der Basiseinzugsgebiete befinden, werden nicht gesondert betrachtet und bewertet. Damit können nur summarische Aussagen bezüglich der hydraulischen Belastung für das gesamte Basiseinzugsgebiet getroffen werden. Belastungen aus oberhalb liegenden Gebieten können durch das Verfahren nicht berücksichtigt werden.

- **Signifikanzkriterium**: Bei den Daten zur Ermittlung der Hochwasserkennwerte ist für die Beispiele in Baden-Württemberg und Bayern zu berücksichtigen, dass sich die Daten nicht auf das natürliche Abflussgeschehen beziehen. Daher wird durch stark anthropogene Beeinflussung der einjährige Abfluss erhöht, wodurch bei der Nachweisführung ein höherer Einleitungsabfluss zulässig ist. Für das Beispiel in Hessen werden noch stärkere Vereinfachungen durch den pauschalen Ansatzes für die Hochwasserspende getroffen. Damit kann die lokale Gebietscharakteristik nicht berücksichtigt werden. Der bekannte Zusammenhang, dass größere Einzugsgebiete kleinere Hochwasserspenden aufweisen, geht damit verloren.

2.1.2 ATV-DVWK-M 153

Im Merkblatt ATV-DVWK-M 153 (ATV-DVWK 2000) ist für die Bewertung der hydraulischen Gewässerbelastung ein Verfahren aufgeführt, dass sich beim Signifikanzkriterium an der Erodierbarkeit der Gewässersedimente orientiert. Folgende Punkte kennzeichnen das Verfahren:

Bezugsraum:

Werden Regenabflüsse aus Siedlungen zwischengespeichert, so dass die Leerlaufzeiten der Retentionsbecken mehr als 30 Minuten betragen, so muss der erforderliche Abstand zu ggf. vorhandenen ober- bzw. unterhalb liegenden Einleitungen gesondert untersucht werden.
GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswassereinleitungen

Signifikanzkriterium:
Der zulässige Einleitungsabfluss \(Q_{dr,\text{max}} \) wird in Abhängigkeit der Erodierbarkeit der Gewässersedimente und dem Mittelwasserabfluss nach folgender empirischer Gleichung festgelegt:

\[
Q_{dr,\text{max}} = e_w \cdot MQ \cdot 1000 \quad \text{l/s}
\]

\(e_w \) dimensionsloser Einleitungswert in Fließgewässern in Abhängigkeit von der Korngröße der Sedimente nach Tabelle 2.2

\(MQ \) Mittelwasserabfluss an der Einleitungsstelle [m³/s]

Tabelle 2.2 Einleitungswert \(e_w \) in Abhängigkeit von der Korngröße ATV-DVWK-Merkblatt 153 (2000)

<table>
<thead>
<tr>
<th>Gewässersediment</th>
<th>Einleitungswert (e_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>überwiegend lehmig-sandig</td>
<td>2 - 3</td>
</tr>
<tr>
<td>kiesig (< faustgroß)</td>
<td>4 - 5</td>
</tr>
<tr>
<td>steinig (>faustgroß)</td>
<td>6 - 7</td>
</tr>
</tbody>
</table>

Weiterhin wird nach dem Emissionsprinzip an jeder Einleitungsstelle der Einleitungsabfluss in Abhängigkeit vom Typ des Vorflutgewässers begrenzt auf Werte zwischen 15 – 240 l/(s·ha), wobei der Einleitungsabfluss in Flüsse und Teiche und Seen nicht begrenzt ist. Weitere Hinweise sind dem Merkblatt zu entnehmen.

MCHELBACH/MEIßNER (1999) weisen für die Einleitungswerte nach Tabelle 2.2 darauf hin, dass diese Werte an besondere regionale Anforderungen angepasst werden können. Dieses gilt insbesondere für Flachlandbäche, für die wenige Erfahrungen über die Auswirkung hydraulischer Belastungen vorliegen.

2.1.3 BWK-M3, vereinfachter Nachweis

Im vereinfachten Verfahren nach Merkblatt BWK-M 3 (BWK 2001) wird neben stofflichen Parametern auch die Einhaltung der hydraulischen Belastung überprüft. Die hydraulischen Anforderungen gelten als erfüllt, wenn der jährlich einmal überschrittene potenziell naturnahe Hochwasserabfluss (HQ$_{1,pnat}$) im Gewässer durch niederschlagsbedingte Einleitungen maximal um einen bestimmten Betrag (i. d. R. 10%) erhöht wird.

Werden diese Anforderungen nicht eingehalten, so werden orstsspezifische Maßnahmen notwendig. Alternativ kann zuvor jedoch auch eine genauere Erhebung orts spezifischer Grundlagendaten vorgenommen oder ein detailliertes Nachweisverfahren angewendet werden.

Der hydraulische Nachweis gliedert sich in folgende Punkte:

- **Festlegung des Bezugsraums** (geschlossenes Siedlungsgebiet): Die Emissionen aus einem geschlossenen Siedlungsgebiet belasten gemeinsam das Gewässer. Erfolgt im Einflussbereich keine weitere Einleitung, endet das geschlossene Siedlungsgebiet. Eine exakte Abgrenzung des Einflussbereiches ist nach Merkblatt BWK-M 3 zurzeit nicht möglich. Für die Abschätzung des stofflichen Einflussbereiches ist im Merkblatt eine Hilfsgröße in Abhängigkeit von der mittleren Tiefe und der mittleren Fließgeschwindigkeit (bei MNQ) angegeben, die zwischen $< 1,6 – 4,8$ km liegt.

- **Ermittlung des HQ$_{1,pnat}$**: Es erfolgt eine Ermittlung der potenziell naturnahen jährlichen Hochwasserspende (aus Pegelaufzeichnungen, aus N-A-Simulationen bzw. mit Hüllkurven aus dem Merkblatt BWK-M 3, Anhang 4) und eine Ermittlung des oberirdischen Einzugsgebietes bis zum Ende des geschlossenen Siedlungsgebietes.

- **Ermittlung des Einleitungsabflusses**: (aus Kanalnetzberechnung)

- **Signifikanzkriterium**: Nachweis der Zulässigkeit der hydraulischen Belastung

\[
Q_{E1,zul} < 1,0 \cdot HQ_{1,pnat} \cdot \frac{A_{red}}{100} + x \cdot HQ_{1,pnat} \cdot A_Eo \ [l/s]
\]

mit

- HQ$_{1,pnat}$: potenziell naturnahe jährliche Hochwasserspende [l/(s*km²)]
- A_{red}: befestigte Fläche des geschlossenen Siedlungsgebietes [ha]
- A_{Eo}: oberirdisches Einzugsgebiet des Gewässers [km²]
- $Q_{E1,zul}$: zulässiger kritischer jährlicher Einleitungsabfluss [l/s]
- x: Multiplikationsfaktor für die zulässige Abflusserhöhung für anthropogene Einflüsse, in der Regel 0,1

(der Wert spiegelt den Faktor wieder, um den der einjährige Abfluss durch den zweijährlichen Abfluss überschritten wird. Dieser Wert kann nach BWK-M 3 regional differenziert werden)

Der Nachweis ist für jedes durch Niederschlagswassereinleitungen belastetet Gewässer zu führen. Mündet im Einflussbereich ein Gewässer, so erfolgt der Nachweis zusätzlich für beide Gewässer an der letzten Einleitungsstelle vor dem Zusammenfluss unter Berücksichtigung des geschlossenen Siedlungsgebietes.
2.1.4 Leitfaden Hessen
In Hessen wurde eine Handlungsanleitung „Leitfaden für das Erkennen ökologisch kritischer Gewässerbelastungen durch Abwassereinleitungen“ erarbeitet (HMULV 2004a), die weitestgehend auf dem vereinfachten Nachweis nach Merkblatt BWK-M 3 aufbaut.

Nach HMULV (2004b) liegt eine regionalisierte Modellierung für eine potenziell naturnahe Hochwasserspende in Hessen noch nicht vor. Daher werden detaillierte Empfehlungen zur Wahl der Hochwasserspende aus den Hüllkurven und dem X-Faktor gegeben. U.a. in folgenden Punkten sind Unterschiede zum Merkblatt BWK-M 3 gegeben:

- Ein rechnerischer Nachweis der hydraulischen Belastung kann entfallen, wenn das Verhältnis von \(A_u/A_{Eo} = 0,01 \) ist und ein Gefälle des Gewässers im Bereich zwischen der Quelle bis Ende des Einflussbereiches von 1 % überschritten wird.
- Für den sog. „X“-Faktor wird eine Empfehlung gegeben, diesen in Abhängigkeit von der Gewässerlandschaft zwischen 0,1 und 0,3 zu wählen.

2.1.5 LANU Merkblatt M-2
In Schleswig-Holstein erfolgt die Bewertung der Niederschlagswassereinleitungen nach LANU Merkblatt M-2 (LANU 2002). Dabei sind für jede Einleitungsstelle folgende Nachweise zu erbringen:

- **Begrenzung auf bordvollen Abfluss**: Es ist für den einjährlichen Abfluss nachzuweisen, dass der bordvolle Abfluss bei sommerlichen Starkregen nicht überschritten wird. Dazu wird zunächst der bordvolle Abfluss berechnet, wozu ein Aufmaß der Gerinnegeometrie und der Wasserspiegellage mindestens bis 100 m unterhalb der Einleitungsstelle erfolgen muss. Die zulässige Einleitungs menge ergibt sich aus Differenz zwischen Mittelwasserabfluss und bordvollem Abfluss \(Q_{bw} \).

- **Begrenzung des Abflusses zur Vermeidung von Erosion**: Dazu ist die Beschaffenheit von Böschung und Sohle des Gewässers bis mindestens 100 m unterhalb der Einleitungsstelle festzustellen und der kritische Abfluss zu ermitteln, bei dem es zu einer Erosion kommt. Die zulässige Einleitungs menge (Häufigkeit des Einleitungsabflusses wird dabei in Abhängigkeit von der ökologischen Bedeutung des Gewässers gewählt, \(n = 0,5 – 2 \)) ergibt sich aus Differenz zwischen Mittelwasserabfluss und Erosionsabfluss \(Q_e \).

Nähere Angaben sind (LANU 2002) zu entnehmen.
Aufgrund der detailliert zu ermittelnden Daten für die Gerinnegeometrie und die genannten Wasserstände, die für NRW nicht flächendeckend vorliegen, ist dieses Verfahren für die Bewertungsmethodik nicht anwendbar.

2.1.6 Leitfaden zur detaillierten Nachweisführung gemäß BWK-M 3

Die Sicherheiten bei der vereinfachten Nachweisführung werden bei der detaillierten Nachweisführung verringert, was mit einer deutlich aufwändigeren Nachweisführung verbunden ist. Für die Bewertungsmethodik, dessen Ziel eine vereinfachte Beurteilung für ganz NRW ist, kommt eine detaillierte Nachweisführung nicht in Frage, weshalb an dieser Stelle dieser Nachweis nicht weiter ausgeführt wird.

Wesentlich für die Bewertungsmethodik sind folgende Hinweise zur Abgrenzung des Nachweisraums (Bezugsraums), die nach BWK (2006) auch für das vereinfachte Verfahren angewendet werden können:

- \(HQ_{1,Prognose} \leq 1,01 \cdot HQ_{1,pnat} \)
- \(\frac{A_u}{AE_0} \leq 0,0075 + 0,025 \cdot \frac{HQ_{2,pnat}}{HQ_{1,pnat}} - 1 \)
- \(AE_0 > 5,000 \text{ km}^2 \)
- Stauwurzel einer Talsperre mit der Aufgabe der Abflussbewirtschaftung und einem spezifischen Speichervolumen > 200 m³/ha \(A_u \)

mit:
- \(HQ_{1,Prognose} \) Gewässerabfluss im Prognosezustand einschließlich niederschlagsbedingter Einleitungen im Wiederkehrintervall \(T = 1a \) in l/s
- \(HQ_{2,pnat} \) Gewässerabfluss im potenziell naturnahen Zustand mit dem Wiederkehrintervall \(T = 2a \), der zu großflächigen Substratumlagerungen führt in l/s
- \(HQ_{1,pnat} \) Gewässerabfluss im potenziell naturnahen Zustand mit dem Wiederkehrintervall \(T = 1a \) in l/s
- \(A_u \) undurchlässige Fläche des kanalisierten Einzugsgebietes in km²
- \(AE_0 \) natürliches Gewässereinzugsgebiet in km²

2.1.7 Folgerungen und Konzept für die Bewertungsmethodik
Die wesentlichen Inhalte der vorgenannten Ansätze werden in den Tabellen 2.3 – 2.5 gegenübergestellt. Unter Berücksichtigung der Datenverfügbarkeit für die Bewertungsmethodik werden dabei folgende Folgerungen für die Bewertungsmethodik gezogen:
GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswassereinleitungen

Bezugsraum:

Tabelle 2.3: Übersicht über die Bezugsraumdefinition der Bewertungsansätze

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Bezugsraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Main-Projekt“</td>
<td>Einzugsgebiete 10 bis 50 km²</td>
</tr>
<tr>
<td>ATV-DVWK-M 153</td>
<td>Bäche (B < 5 m): < 1.000 x mittlere Wasserspiegelbreite Flüsse: ohne Begrenzung</td>
</tr>
<tr>
<td>BWK-M 3, vereinfachter Nachweis</td>
<td>Abgrenzungskriterium angelehnt an stofflichen Einflussbereich in Abhängigkeit der Fließtiefe und -geschwindigkeit bei MNQ: < 1,6 – 4,8 km</td>
</tr>
<tr>
<td>Leitfaden Hessen</td>
<td>entspricht BWK-M 3, vereinfachter Nachweis</td>
</tr>
<tr>
<td>LANU Merkblatt M-2</td>
<td>Abgrenzungskriterium in Abhängigkeit von (A_u/A_{EO}) der oberstrom befindlichen befestigten Fläche: Überlagern von Einleitungen bei (A_u/A_{EO} > 1%)</td>
</tr>
<tr>
<td>Detaillierter Nachweis BWK-M 3</td>
<td>Ende Bezugsraum ist nachzuweisen 1)</td>
</tr>
</tbody>
</table>

1) Nähere Angaben sind BWK (2006) zu entnehmen

Die pauschale Bezugsraumdefinition des „Main-Projektes“ wird für die Bewertungsmethodik als nicht sinnvoll erachtet, da eine Bewertung kleiner Gewässer damit nicht möglich ist. Vielmehr sollte eine möglichst einleitungsscharfe Berücksichtigung von Einleitungen erfolgen, um auch kleine Gewässer bewerten zu können.

Auch das Abgrenzungskriterium des LANU Merkblatt ist als alleiniges Kriterium für NRW aufgrund der dortigen hohen Versiegelung nicht sinnvoll einsetzbar. Das Kriterium sollte aber als ergänzendes Kriterium mit berücksichtigt werden, wie es auch der Detaillierte Nachweis nach BWK-M 3 vorsieht.

Die Bezugsraumdefinition des ATV-DVWK-M 153 bzw. des vereinfachten Nachweises Merkblatt BWK-M 3 können nur vereinfacht für die Bewertungsmethodik angewendet werden, da flächendeckende Daten in NRW für die Parameter (Gewässerbreite, Fließgeschwindigkeit) nicht vorliegen. Eine vereinfachte Bezugsraumdefinition ist aber notwendig, um eine Überlagerungen von Abflussspitzen von oberhalb bzw. unterhalb liegenden Einleitungen zu berücksichtigen.
Signifikanzkriterium

Tabelle 2.4: Übersicht über die Signifikanzkriterien der Bewertungsansätze

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Signifikanzkriterium</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Main-Projekt“</td>
<td>$Q_{ein} > HQ$</td>
</tr>
<tr>
<td>ATV-DVWK-M 153</td>
<td>$Q_{ein} > e_w \cdot MQ \cdot 1000$</td>
</tr>
<tr>
<td>BWK-M 3, vereinfachter Nachweis</td>
<td>$Q_{\text{Ein}} > 1.0 \cdot Hq_{1,\text{pnat}} \cdot A_{\text{red}} + x \cdot Hq_{1,\text{pnat}} \cdot A_{\text{Eo}}$</td>
</tr>
<tr>
<td>Leitfaden Hessen</td>
<td>entspricht BWK-M3, vereinfachter Nachweis</td>
</tr>
<tr>
<td>LANU Merkblatt M-2</td>
<td>Begrenzung bordvolle Abfluss: $Q_{\text{Ein}} > Q_{\text{bv}} - MQ$ oder $Q_{\text{Ein}} > Q_{\text{l}} - MQ$</td>
</tr>
<tr>
<td>Detaillierter Nachweis BWK-M 3</td>
<td>hydrologisch: $HQ_{1,\text{bwz.2 Pragnave}} > HQ_{2,\text{pmax}}$ oder hydraulisch: Nachweis der kritischen Sohlschubspannung</td>
</tr>
</tbody>
</table>

1) Einleitungswert e_w in Abhängigkeit von der Korngröße der Gewässersedimente
2) Nähere Angaben sind BWK (2006) zu entnehmen

Aufgrund der detailliert erforderlichen Datenbasis sind die Signifikanzkriterien des LANU Merkblatt M-2 und des detaillierten Nachweises nach BWK-M3 für die Bewertungsmethode nicht geeignet.

Da das Signifikanzkriterium des vereinfachten Nachweises BWK-M 3 bei immissionsorientierten Nachweisen in NRW häufig angewendet wird, wird dieses Kriterium für die Bewertungsmethode vorgeschlagen.

Einleitungsabfluss:

Tabelle 2.5: Übersicht über die Einleitungsabflussberechnung der Bewertungsansätze

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Einleitungsabfluss</th>
</tr>
</thead>
</table>
Da flächendeckende Daten der Einleitungsabflüsse aus Kanalnetzberechnungen bzw. Schmutzfachtnachweisen für NRW nicht vorliegen, muss eine Ermittlung dieser Abflüsse vereinfacht über einen üblichen Ansatz mit Regenspenden und das angeschlossene Einzugsgebiet erfolgen, wie er auch dem Ansatz vom „Main-Projekt“ zugrunde liegt.

2.2 Regionalisierungsverfahren zur Bestimmung von Hochwasserkennwerten

Bei den zuvor beschriebenen Signifikanzkriterien wird zur Bewertung in der Regel ein definiertes Gewässerabfluss als Bezugsgröße herangezogen. Beim vereinfachten Nachweis des BWK-M 3 ist dies der potenziell naturnahe Hochwasserabfluss $HQ_{1,pnat}$ mit dem Wiederkehrintervall $T=1\text{a}$, der für die Bewertungsmethodik angesetzt werden soll.

Nachfolgend werden die Erkenntnisse von Regionalisierungsverfahren zur Bestimmung von Hochwasserkennwerten ausgewertet und in Abschnitt 2.2.4 auf die Anwendbarkeit für die Bewertungsmethodik hin untersucht.

2.2.1 Ansatz Bergisch-Rheinischer-Wasserverband in NRW

Größe des Einzugsgebietes

- mittleres Gefälle des Einzugsgebietes
- mittlerer k_f-Wert
- Jährlicher 24-Stunden Niederschlag
- Karstanteil im Einzugsgebiet

Zwischen diesen Parametern und dem simulierten potenziell natürlichen jährlichen Abfluss werden Beziehungen hergestellt, mit denen $HQ_{1,\text{pnat}}$-Werte für beliebige Einzugsgebiete abgeschätzt werden können. Die Ergebnisse werden auf Plausibilität geprüft. Im Abgleich zwischen Modellierung und Regionalisierungsformel zeigt sich, dass in mehr als der Hälfte der Fälle eine Abweichung von < 50 % festzustellen ist. Bei einigen Werten aber auch Abweichungen von mehr als 100 % auftreten (ROTHE et al. 2002).

Nach ROTHE et al. liegen die mit diesem Vorgehen erzielbaren Ergebnisse im Bereich zwischen den Optionen „N-A-Modell“ und „Schätzung aus Erfahrungswerten“. Die Anwendbarkeit ist nach ROTHE et al. beschränkt auf Einzugsgebiete bis ca. 50 km² und mit Unsicherheiten noch einsetzbar bis ca. 80 km², wobei das Verfahren eine deutliche Abhängigkeit von den Karstanteilen zeigt.

Fazit:

Aufgrund der Einschränkung der Einzugsgebietsgröße ist das obige Modell nicht für ganz NRW einsetzbar. Wegen fehlender weitergehender Verifizierung muss davon ausgegangen werden, dass sich der mögliche Einsatzbereich dieses Verfahrens auf die Karstgebiete beschränkt.

2.2.2 Ansatz Ruhr-Universität Bochum für NRW

Fazit:
Insgesamt ist unklar, wie groß der Einfluss der zugelassenen bebauten Einzugsgebietsfläche auf die Hochwasserkennwerte der ausgewählten Pegel ist. Es kann daher keine Aussage darüber getroffen werden, wie groß der mögliche Fehler wäre, wenn aus den regionalisierten MHQ-Werten über eine noch zu erstellende Beziehung auf das $HQ_{1,\text{pnat}}$ geschlossen werden würde.

Das für die Bewertungsmethodik gesuchte $HQ_{1,\text{pnat}}$ wird mit dem Regionalisierungsverfahren der Ruhr-Universität Bochum jedoch nicht berechnet und kann daher nicht eingesetzt werden.

Für eine mögliche Weiterentwicklung der Bewertungsmethodik sollte in Zukunft geprüft werden, ob der Ansatz der Ruhr-Universität Bochum mit einer noch zu erstellenden entsprechenden Beziehung zwischen HQ_1/MHQ genutzt werden könnte.

2.2.3 Erkenntnisse von Regionalisierungsansätzen außerhalb von NRW

Nachfolgend werden in Kurzform Erkenntnisse von ausgewählten Regionalisierungsansätzen außerhalb von NRW aufgeführt.

Baden-Württemberg
Für Baden-Württemberg hat die LFU (1999) ein Regionalisierungsverfahren für Hochwasserabfluss-Kennwerte entwickelt und angewendet. Als Eingangsgröße für die Ermittlung des MHQ bzw. der HQ_1 Werte werden dabei folgende Parameter verwendet:

- Fläche des Einzugsgebietes
- Bebauungsanteil
- Waldanteil
- Gewogenes Gefälle
- Fließlänge entlang des Hauptgewässers von der Wasserscheide bis zur Mündung
- Fließlänge entlang des Hauptgewässers vom Gebietsschwerpunkt bis zur Mündung
- Mittlerer jährlicher Gebietsniederschlag
- Landschaftsfaktor

Bei diesem Regionalisierungsmodell zeigte sich, dass kein einheitliches Modell für die gesamte Landesfläche aufgestellt werden kann. Daher ist es notwendig, einen Landschaftsfaktor einzufügen, der pauschal alle regionalen Einflussgrößen berücksichtigt, die einerseits durch die Geologie des Landschaftsraums sowie andererseits auch durch lokale Besonderheiten (z.B. Gewässerausbau, Hochwasserrückhaltebecken) in einem Einzugsgebiet bestehen. Der Landschaftsfaktor hat einen deutlichen Einfluss auf die regionalisierten Werte.

Mecklenburg Vorpommern

Für Mecklenburg Vorpommern (HAUP 2000) ist ein Regionalisierungsverfahren für Hochwasserabfluss-Kennwerte entwickelt worden. Als Eingangsgröße für die Ermittlung des MHQ bzw. der HQ₁ Werte werden dabei folgende Parameter verwendet:

- Fläche des Einzugsgebiets
- mittleres Gefälle eines Gebietes
- Bodendurchlässigkeit
- Seerückhalt
- Mittlerer jährlicher Gebietsniederschlag

Pegelauswertung aus Bayern, Verhältnis HQ₁/MQ

Die starke Streuung der Werte aus Bayern zeigt, mit welchen Unsicherheiten bei der Abschätzung des HQ$_1$ nur aufgrund des MQ zu rechnen ist. Eine Anwendung des Ansatzes für die Bewertungsmethodik wird daher nicht weiter verfolgt. Eine Auswertung für Pegel, die nicht durch Siedlungsgebiete beeinflusst sind, liegt zudem nicht vor.

Bild 2.1: Natürliche Verhältnisse zwischen mittlerem jährlichem Hochwasser HQ$_1$ und Mittelwasserabfluss MQ, MICHELBACH/MEIßNER (1999)

2.2.4 Folgerungen für die Bewertungsmethodik

Nur der Regionalisierungsansatz des Bergisch-Rheinsichen-Wasserverbandes gibt tatsächliche Werte für das HQ$_{1,\text{prnat}}$ an, der für die Bewertungsmethodik in Anlehnung nach BWK-M 3 verwendet werden soll. Aufgrund der Einschränkung der Einzugsgebietsgröße bei der Anwendung des Modells erscheint der Ansatz derzeit für ganz NRW nicht geeignet zu sein.

Mit dem Regionalisierungsverfahren der Ruhr-Universität Bochum wird nur das MHQ berechnet, wobei keine Aussage getroffen werden kann, wie groß der mögliche Fehler wäre, wenn aus den regionalisierten MHQ-Werten über eine Beziehung auf das HQ$_{1,\text{prnat}}$ geschlossen werden würde, zumal die ausgewählten Pegel durch bebaute Siedlungsflächen beeinflusst sein können. Das Verfahren wird daher für die Bewertungsmethodik ebenfalls nicht vorgeschlagen.

Die weiteren dokumentierten Ansätze aus Baden-Württemberg und Mecklenburg Vorpommern weisen darauf hin, dass bei Regionalisierungsverfahren generell lokal typische Merkmale zu berücksichtigen sind, die eine Übertragung von Regionalisierungsansätzen auf NRW, die für andere Gebiete entwickelt wurden, als nicht möglich erscheinen lassen.
Der Ansatz der Pegelauswertung aus Bayern, bei dem ein insgesamt sehr unsicherer Zusammenhang aus HQ1/MQ-Werten für die Abschätzung des HQ1 gewählt wird, ist für die Bewertungsmethodik ebenfalls nicht geeignet, zumal der Zusammenhang für Pegel, die durch Siedlungsgebiete beeinflusst sind, erstellt wurde.

Abstimmung mit dem MUNLV

Die Problematik der Regionalisierungsansätze wird in einem Abstimmungsgespräch mit dem MUNLV am 19.04.2006 erörtert (Anlage 2.1). Es wird beschlossen, dass für die vereinfachte Bewertung im Rahmen der Bewertungsmethodik der Mittelwert aus den Hüllkurven nach Anhang 4, BWK-M 3 für die Hq1,pnat−Werte als Funktion des Gefälles und der Einzugsgebietsgröße angesetzt werden soll.

Bei der Besprechung wird ebenfalls diskutiert, ob bei Einzugsgebieten, für die berechnete Hq1,pnat−Werte aus aufwändigen Niederschlag-Abfluss-Modellierungen vorliegen, diese Werte angesetzt werden sollten. Da es jedoch derzeit noch keine Datenbank gibt, über die berechnete Hq1,pnat−Werte auf NRW-Ebene erfasst werden könnten, scheidet ein solches Vorgehen für NRW derzeit aus.

Überlegungen zur Berücksichtigung detaillierter Daten

Als Hinweise seien an dieser Stelle folgende Punkte genannt, die bei der Berücksichtigung von detaillierten Berechnungsdaten für das Hq1,pnat bedacht werden müssten:

- In den Ergebnissen der hydraulischen Bewertung müsste kenntlich gemacht werden, ob die Daten auf den Hüllkurven-Werten oder berechneten Werten beruhen, um die Ergebnisse vergleichend für unterschiedliche Einzugsgebiete bewerten zu können.
- Eine Ausweisung von Ergebnissen mit detaillierteren Daten wäre nach Einschätzung von Herrn Dr. Mertsch nur sinnvoll, wenn für mindestens etwa 30% der Fläche von NRW solche Daten vorliegen würden (Anlage 2.1).
3 Bewertungsmethodik

Aus den Folgerungen nach Abschnitten 2.1.7 und 2.2.4 wird für die Bewertungsmethodik des GISBREIN eine Vorgehensweise in Anlehnung an den vereinfachten Nachweis Merkblatt BWK-M 3 festgelegt. Eingeschränkt wird die Anwendung des vereinfachten Nachweises durch die Datenverfügbarkeit und das automatisierte Vorgehen auf GIS-Basis.

Im Folgenden wird auf die wesentlichen Arbeitsschritte der Bewertungsmethodik zur Beurteilung der hydraulischen Belastung durch Niederschlagswassereinleitungen eingegangen. Die Annahmen für die notwendigen Vereinfachungen, die sich aufgrund der Datenverfügbarkeit und des automatisierten Vorgehens ergeben, werden dargelegt. In Abschnitt 3.7 wird die programmtechnische Umsetzung der Realisierung der GIS-Tools dokumentiert. Das detaillierte Vorgehen für die Programmierung der Bewertungsmethodik ist Anlage 3.1 zu entnehmen.

3.1 Einleitungsabflüsse

Für die Bewertungsmethodik sind daher Annahmen zu treffen, mit denen die Einleitungsabflüsse berechnet werden können. Dies erfolgt über die Ermittlung der versiegelten Flächen und dem Ansatz von Regenspenden unter Berücksichtigung der Abflussbeeinflussung durch Beckenanlagen, worauf nachfolgend eingegangen wird.

3.1.1 Versiegelte Flächen

Trenn- und Mischsysteme (REBEKA- u. NIKLAS-IGL Daten)

Über das Regenbeckenkataster REBEKA sind in NRW kommunale versiegelte Einzugsgebiete des Misch- und Trennsystems erfasst, die über ein Regenbecken entwässern. Weiterhin werden in NRW über das Kläranlagenkataster NIKLAS-IGL Direkteinleiter erfasst. In Tabelle 3.1 ist eine Flächenbilanz für NRW zusammen gestellt. Demnach werden 181.483 ha Trennsystem- bzw. Straßenflächen nicht über die genannten Kataster erfasst, was einen Anteil von 49 % der gesamten versiegelten Fläche von 373.994 ha ausmacht.

Damit kann nur für 51 % der versiegelten Flächen über die Katasterangaben eine relativ einleitungsscharfe Zuordnung zum Gewässer getroffen werden. Dazu zählen alle Flächen, die an Mischsysteme angeschlossen sind. Für die übrigen Flächen sind Ersatzannahmen für die Berücksichtigung zu treffen.
Tabelle 3.1: Flächenbilanz der versiegelten Fläche NRW

<table>
<thead>
<tr>
<th>$A_{red.}$ Gesamtbilanz NRW</th>
<th>[ha]</th>
<th>[%]</th>
<th>Datenquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mischsystem</td>
<td>134.674</td>
<td>36</td>
<td>MUNLV (2003)</td>
</tr>
<tr>
<td>Trennsystem / Straßen</td>
<td>239.320</td>
<td>64</td>
<td>MUNLV (2002)</td>
</tr>
<tr>
<td>Summe</td>
<td>373.994</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$A_{red.}$ Bilanz der Trennsystem / Straßenflächen</th>
<th>[ha]</th>
<th>[%]</th>
<th>Datenquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>über REBEKA erfasst</td>
<td>55.697</td>
<td>23</td>
<td>MUNLV (2002)</td>
</tr>
<tr>
<td>über NIKLAS-IGL 1) erfasst</td>
<td>2.140</td>
<td>1</td>
<td>KIT (2006)</td>
</tr>
<tr>
<td>nicht über REBEKA oder NIKLAS-IGL erfasst</td>
<td>181.483</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>239.320</td>
<td>100</td>
<td>MUNLV (2002)</td>
</tr>
</tbody>
</table>

1) soweit Flächenangaben bei den Einleitern angegeben sind

Trennsysteme und Straßen ohne Katastererfassung
Die versiegelten Flächen von Trennsystemen und Straßen, die nicht in den Katastern erfasst sind ($A_{red,TS}$, Teileinzugsgebiet), werden über eine Verschneidung der REBEKA-Daten bzw. der NIKLAS-IGL Daten mit den ATKIS-Daten (Amtliches Topografisch-Kartografisches Informationssystem) ermittelt, die für NRW vorliegen. Eine solche Verschneidung wurde auch vom MUNLV durchgeführt, aus der die Flächenbilanz nach Tabelle 3.1 resultiert. Folgende Punkte werden bei der Verschneidung berücksichtigt:

- Die Verschneidung erfolgt für jedes Teileinzugsgebiet, wobei ein Teileinzugsgebiet als oberirdisches Einzugsgebiet eines Gewässerabschnitts definiert ist. Ein Gewässerabschnitt ist dabei der Abstand zwischen aufeinander folgenden Verzweigungen eines Gewässers (Hinweise zu den Teileinzugsgebieten siehe Abschnitt 3.4).
- Bei der Verschneidung werden von den gesamten versiegelten Flächen eines Teileinzugsgebietes, die über die ATKIS-Daten ermittelt werden, die Flächen abgezogen, die über das REBEKA und das NIKLAS-IGL Kataster dem Teileinzugsgebiet zugeordnet werden:
 $A_{red,TS}$, Teileinzugsgebiet = $A_{red,gesamt,Teileinzugsgebiet}$ – $A_{red,Einleitung,Teileinzugsgebiet}$
- Bei den ATKIS-Daten werden in Anlehnung an das Vorgehen des MUNLV (2003) folgende Objektarten für die versiegelten Flächen mit den zugehörigen Befestigungsgraden berücksichtigt:
 2100: Baulich geprägte Flächen, Befestigungsgrad = 0,45
 2200: Siedlungsreiflächen, Befestigungsgrad = 0,2
 3000: Verkehrsanlagen, Befestigungsgrad = 0,8

Hinweise:
- Eine Auswertung von Luftbildaufnahmen für den gesamten Emscherraum von BECKER et al. (1998) deutet darauf hin, dass der Befestigungsgrad für baulich ge-
prägte Flächen möglicherweise geringer liegt. Nach der Auswertung für den Em-
scherreraum ergibt sich ein Befestigungsgrad von 0,41 (mit $A_{EK} = 525$ km², $A_{red} = 215$ km²). In dem genannten Befestigungsgrad sind dabei sowohl alle öffentlichen Ver-
kehrsflächen als auch die versiegelten Flächen auf den Grundstücken enthalten.
 Unter der Annahme des obigen Befestigungsgrades von 0,8 für die Verkehrsanla-
gen ergibt sich mit den Daten für den Emscherrraum von BECKER et al. (1998) nach
folgender Aufstellung ein Befestigungsgrad von 0,34 für die Grundstücksflächen
(Dach- und priv. Flächen).

Flächenbilanz im Emschergebiet mit Befestigungsgrad

<table>
<thead>
<tr>
<th></th>
<th>A_{EK} gesamt</th>
<th>A_{red} gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Befestigungsgrad</td>
<td>0,41</td>
<td>0,41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aufteilung der versiegelten Flächen A_{red} im Emschergebiet</th>
<th>A_{red}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>öffentliche Straßenflächen</td>
<td>6.450</td>
<td>30</td>
</tr>
<tr>
<td>Dachflächen</td>
<td>8.815</td>
<td>41</td>
</tr>
<tr>
<td>priv. Flächen schmutzig</td>
<td>4.945</td>
<td>23</td>
</tr>
<tr>
<td>priv. Flächen sauber</td>
<td>1.290</td>
<td>6</td>
</tr>
<tr>
<td>Summe A_{red}</td>
<td>21.500</td>
<td>100</td>
</tr>
</tbody>
</table>

Ermittlung von A_{EK} für Straßenflächen mit Befestigungsgrad von 0,8

A_{EK} Straßenflächen	8.063 ha
A_{red} Straßenflächen	6.450 ha
Befestigungsgrad	0,8

Quelle: MUNLV 2003

Ermittlung des Befestigungsgrades für die Grundstücksflächen (Dach- und priv. Flächen)

A_{EK} Grundstücksflächen	44.377 ha
A_{red} Grundstücksflächen	15.050 ha
Befestigungsgrad	0,34

- Weitere Hinweise zu Befestigungsgraden sind DOHMANN/COBURG (2003) zu ent-
 nehmen, die eine Auswertung für NRW durchgeführt haben. Dabei wird als „vermu-
 tetes Optimum“ ein Befestigungsgrad von 40 % für Siedlungsflächen (ATKIS-
 Objektnr. 2111-2114) angesetzt, der ebenfalls unter dem oben genannten Wert von
0,45 von MUNLV (2003) liegt.
- Zu der ATKIS Objektart 3000 gehören auch die Objektarten 3101 (Straße) und 3104
 (Straße komplex). Da für diese nur Längen- und keine Flächenangaben vorhanden sind,
 werden in Anlehnung an MUNLV (2003) die Objektarten mit folgenden mittleren Straßen-
 breiten multipliziert:

 - Objektart 3101 15 m
 - Objektart 3104 30 m

Hinweis: Objektart 3104 setzt sich aus den Objektarten 3105 und 3106 zusammen, wobei für die Straßenlänge nur Objektart 3105 anzusetzen ist.
- Die Objektarten 3101 und 3104 werden nach den Straßenkategorien mit folgenden Wid-
 mungen getrennt bilanziert:
Mit dieser Differenzierung können die Anteile dieser Straßenflächen, die direkt in die Gewässer einleiten, unterschiedlich angesetzt werden. Dies ist für die Methodik zum jetzigen Stand allerdings nicht vorgesehen.

- Die über die Objektarten 3101 und 3004 erfassten Straßen, liegen im innerörtlichen Bereich teilweise in den Objektarten 2100 bzw. 2200. Um die Flächen nicht doppelt zu erfassen, werden von den Objektarten 2100 bzw. 2200 die Straßenflächen abgezogen.
- Für die innerörtlichen Straßen wird davon ausgegangen, dass diese vollständig über ein Entwässerungssystem an die Gewässer angeschlossen sind.
- Eine Abkopplung von versiegelten Flächen, die durch den Anschluss an Versickerungsanlagen keinen Abfluss in die Gewässer erzeugen, wird nicht berücksichtigt, da über diesen Anteil keine flächendeckenden Daten vorliegen und der Anteil derzeit als gering angesehen wird.

Hinweise:
- Indirekt wird über den Abflussbeiwert nach Abschnitt 3.1.5 ein Anteil von Flächen berücksichtigt, der keinen Abfluss in Richtung Gewässer liefert und damit versickert.
- Prinzipiell bestünde die Möglichkeit, abgekoppelte Flächen direkt zu berücksichtigen. Dazu wäre es notwendig, diese Flächen getrennt z.B. in einem getrennten Eingabefeld in den REBEKA oder den NIKLAS-IGL Daten zu erfassen, was derzeit aber nicht erfolgt.
- Bei der Verschneidung für jedes Teilieinzugsgebiet kann es zu einem Fehler kommen, wenn z.B. über die REBEKA-Daten Überleitungen durch das Kanalnetz von benachbarten Teilieinzugsgebieten in das betrachtete Einzugsgebiet erfolgen. In diesen Fällen kann die über die ATKIS-Daten berechnete versiegelte Fläche, die nicht über die Kataster erfasst wird, für ein Teilieinzugsgebiet negativ werden, wenn z.B. die über die REBEKA-Daten erfasste Fläche \(A_{\text{red,Einleitung},\text{Teilieinzugsgebiet}} \) größer ist, als die über die ATKIS-Daten erfassten Flächen \(A_{\text{red,gesamt,Teilieinzugsgebiet}} \).

\[
A_{\text{red,TS,Teilieinzugsgebiet}} = A_{\text{red,gesamt,Teilieinzugsgebiet}} - A_{\text{red,Einleitung,Teilieinzugsgebiet}}
\]
In diesen Fällen wird die über die ATKIS-Daten berechnete versiegelte Fläche zu 0 gesetzt. Um die Flächenbilanz insgesamt auszugleichen, ist daher ein Flächenausgleich erforderlich. Dieser wird auf Ebene der Einzugsgebiete der Gewässerstationierungskarte durchgeführt.

- Die über die Verschneidung zusätzlich erfasste versiegelte Fläche, die nicht über die Kataster erfasst wird, belastet über eine fiktive Einleitungsstelle den Gewässerabschnitt des Teilflusgebietes.
- Für die Abgrenzung des Bezugsraums (siehe Abschnitt 3.2) ist eine lagemäßige Zuordnung der fiktiven Einleitungsstelle erforderlich. Da es für die fiktive Einleitungsstelle keine präzise Zuordnung geben kann, wird auf der „sicheren Seite“ liegend (was die Berücksichtigung der Überlagerung von oberhalb gelegenen Einleitungsstellen betrifft) die Lage am Ende des Gewässerabschnitts angenommen.

Hinweis:

- Für die über die Verschneidung zusätzlich erfasste versiegelte Fläche, die nicht über die Kataster erfasst wird, wird nach den Empfehlungen des detaillierten Nachweises nach BWK-M 3 folgende Bagatellgrenze eingeführt. Ist die versiegelte Fläche kleiner als dieser Wert, wird die entsprechende Fläche zu 0 gesetzt:

\[\text{Bagatellgrenze: } A_{\text{red,TS,Teileinzugsgebiet, abgem.}} / A_{\text{E Teileinzugsgebiet}} \leq 1\% \]

Fazit:
Aufgrund des hohen Anteils von versiegelten Flächen, die nicht über das REBEKA bzw. NIKLAS-IGL Kataster erfasst werden, sind die vorgenannten Annahmen erforderlich, um über fiktive Einleitungsstellen diese Flächen in der Bewertungsmethodik zu berücksichtigen.

3.1.2 Regenbecken (REBEKA)

 - Becken, die in Einheit mit einem RRB betrieben werden
 - RRB, die zu einer Kläranlage weiterleiten
 - Becken, die als Vorflut den Grundwasserkörper haben
Die Ermittlung des Einleitungsabflusses erfolgt über die direkt an das Bauwerk angegeschlossene versiegelte Fläche durch Multiplikation mit einer Regenspende und einem Abflussbeiwert (siehe Abschnitt 3.1.5).

Bei komplexeren Einzugsgebieten sind für die Ermittlung des Einleitungsabflusses zu berücksichtigen:
- Drossellabflüsse aus oberhalb gelegenen Einzugsgebieten
- Drosselabfluss von dem betrachteten Bauwerk aus in ein unterhalb gelegenes Einzugsgebiet
- Rückhaltemaßnahmen vor der Einleitungsstelle

Erfolgt vor einer Einleitungsstelle eine Rückhaltung der Abflüsse durch ein RRB, so wird der Drosselabfluss des RRB als Einleitungsabfluss angesetzt.

Hinweis:
- Eine Prüfung der ausreichenden Dimensionierung (Überlaufhäufigkeit n) des RRB kann an dieser Stelle nicht erfolgen, da nach BWK-M 3 die zulässige Überlaufhäufigkeit abhängig vom Wiederbesiedlungspotenzial des unterhalb liegenden Gewässerabschnittes ist und in einem Bereich von n=0,5 – n=2 variiert.

Die Regendauer zur Berechnung des Einleitungsabflusses über die Regenspende wird in Abhängigkeit vom mittleren Geländegefälle und der Bauwerksart wie folgt angesetzt:
- Geländeneigung von > 1 % und Beckenart FB oder SKO D=10 Minuten
- Geländeneigung von > 1 % und RÜ mit Fließzeit < 15 Minuten D=10 Minuten
- ansonsten D = 15 Minuten

Hinweise:
- Vorgehen erfolgt in Anlehnung an ATV-A 118, wo ab einer Geländeneigung von > 1 % und einem Befestigungsgrad von über 50 % die maßgebende Fließzeit von 15 Minuten auf 10 Minuten herabgesetzt wird.
- Nach ATV-A 128 werden Fangbecken (FB), die wie Stauraumkanäle mit oben liegender Entlastung (SKO) wirken, bei kleinen Fließzeiten im Kanalnetz von nicht mehr als 15-20 Minuten angesetzt.
- Für das mittlere Geländegefälle wird vereinfachend das mittlere Gewässergefälle des Gewässerabschnittes, in den eingeleitet wird, angesetzt.
- Im Rahmen der Projektphase II ist zu prüfen, ob ggf. bei großen Einzugsgebieten auch eine Anhebung der Regendauer auf Werte > 15 Minuten sinnvoll ist.

Nach Hinweisen des StUA Düsseldorf (Herr Bürgel, siehe Anlage 2.1) sind bei den REBEKA-Daten Plausibilitätsprüfungen insbesondere zur Interpretation der Flächenangabe erforderlich, da bei der Erhebung der Daten das direkt angeschlossene bzw. das gesamt oberhalb gelegene Einzugsgebiet an dieser Stelle angegeben wurde. Plausibilitätskriterien dazu sollen in Projektphase II mit dem FiW RWTH Aachen (Frau Wienert) erarbeitet und abgestimmt werden.

3.1.3 Kläranlagen und Direkteinleiter

Die kommunalen Kläranlagen in NRW unterliegen der staatlichen Überwachung. Das landesweite Kläranlagenkataster NIKLAS-KOM dient zur Verwaltung und Überwachung dieser Daten der kommunalen Kläranlagen. Über die „Datendrehscheibe Einleiterüberwachung
Abwasser“ (D-E-A) stehen die Daten allen staatlichen Behörden mit Anschluss an D-E-A unmittelbar und aktuell zur Verfügung. Die Abflüsse der Kläranlagen werden als zusätzliche Einleitung wie folgt berücksichtigt:

- Ist in den NIKLAS-KOM Daten die Gewässerkennzahl des Gewässers, in das eingeleitet wird, angegeben, so ist die Einleitungsstelle an diesem Gewässer zu verorten.
- Der in den NIKLAS-KOM Daten enthaltene Abfluss bei Regenwetter wird als Einleitung angesetzt.

Aufgrund der Zielstellung sind die NIKLAS-IGL-Daten für die Bewertungsmethodik nur eingeschränkt zu verwenden, da die angeschlossene versiegelte Fläche, die für die Bewertung der Niederschlagswassereinleitungen maßgebend ist, kein „Pflichtfeld“ für die Datenerfassung ist. Die Daten werden unter folgenden Annahmen berücksichtigt:

- Es werden nur Niederschlagswassereinleitungen berücksichtigt.
- Der Einleitungsabfluss wird, wie bei den anderen Einleitungsstellen, nach Abschnitt 3.1.5 berechnet.

Hinweise:
- Nach Auskunft des StUA Duisburg (Herr Müller) ist die Datenerfassung zu den versiegelten Flächen nicht eindeutig, wenn Beckenbauwerke vor der Einleitung vorhanden sind. In diesen Fällen werden die versiegelten Flächen entweder an den Anfallstellen oder an den Bauwerken oder auch an beiden Stellen eingegaben. Hier muss als eine Plausibilitätsabfrage erfolgen, die im Rahmen dieses Projektteils nicht formuliert wurde, da in den untersuchten Beispielgebieten keine Direkteinleitungen aus Industrie, Gewerbe und Landwirtschaft vorkamen.
- Weiterhin existiert nach Auskunft des StUA Duisburg (Herr Müller) in der Datenerfassung kein Eingabefeld für Drosselabflüsse von RRB. Somit können RRB, die bei
den Direkteinleitern vorhanden sind, nicht berücksichtigt werden. Bei der Bewertungsmethodik wird daher so vorgegangen, dass wenn ein RRB vor der Einleitungsstelle vorhanden ist, der Datensatz als nicht vollständig ausgewiesen wird und die Berücksichtigung der Einleitung über die ATKIS-Verschneidung erfolgt. Auf eine Einleitungsstelle im Bereich des Direkteinleiters wird in diesem Fall dann verzichtet.

- In der Projektphase II ist zu prüfen, ob in Abhängigkeit der Beckenbauwerke auch unterschiedliche Dauern der Regenspenden angesetzt werden können, wie es bei den REBEKA Daten nach Abschnitt 3.1.2 erfolgt.

• Einleitungen von betriebseigenen Abwasserbehandlungsanlagen werden nicht berücksichtigt, da nach Auskunft des StUA Duisburg (Herr Müller) der Einleitungsabfluss nur durch den in der Datenbank enthaltenen maximal genehmigten Abfluss abgeschätzt werden könnte, wobei dieser Wert jedoch häufig über dem vorhandenen Einleitungsabfluss liegt.

Da die Einleitungen von betriebseigenen Abwasserbehandlungsanlagen in Bezug auf die Bewertung der niederschlagsbedingten hydraulischen Belastung von Fließgewässern nur eine untergeordnete Rolle spielt, wird eine Nichtberücksichtigung für vertretbar erachtet.

3.1.4 Regenspenden

1a ist in Tabelle 3.2 mit folgendem Aufbau aufgeführt, wobei die Koordinaten als λ/φ-Werte abgelegt sind:

- Spalte 1: geogr. Länge Ost in Grad des Rastermittelpunktes
- Spalte 2: geogr. Breite Nord in Grad des Rastermittelpunktes
- Spalte 3: Klassenbezeichnung der Starkniederschlagshöhe des Rasterfeldes
- Rest: Klassengrenzen in mm

Tabelle 3.2: Beispieldatensatz KOSTRA-Daten D=15min, T=1a

<table>
<thead>
<tr>
<th>Spalte 1</th>
<th>Spalte 2</th>
<th>Spalte 3</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.488</td>
<td>52.536 D</td>
<td>$>=\ 9.5\ -\ 10.0$ mm</td>
<td></td>
</tr>
<tr>
<td>8.613</td>
<td>52.538 C</td>
<td>$>=\ 9.5\ -\ 10.0$ mm</td>
<td></td>
</tr>
<tr>
<td>8.737</td>
<td>52.539 C</td>
<td>$>=\ 9.0\ -\ 9.5$ mm</td>
<td></td>
</tr>
<tr>
<td>7.621</td>
<td>52.444 E</td>
<td>$>=\ 10.0\ -\ 10.5$ mm</td>
<td></td>
</tr>
<tr>
<td>7.746</td>
<td>52.447 E</td>
<td>$>=\ 10.0\ -\ 10.5$ mm</td>
<td></td>
</tr>
<tr>
<td>8.367</td>
<td>52.458 E</td>
<td>$>=\ 10.0\ -\ 10.5$ mm</td>
<td></td>
</tr>
<tr>
<td>8.491</td>
<td>52.460 D</td>
<td>$>=\ 9.5\ -\ 10.0$ mm</td>
<td></td>
</tr>
<tr>
<td>8.615</td>
<td>52.461 D</td>
<td>$>=\ 9.5\ -\ 10.0$ mm</td>
<td></td>
</tr>
<tr>
<td>8.739</td>
<td>52.463 C</td>
<td>$>=\ 9.0\ -\ 9.5$ mm</td>
<td></td>
</tr>
<tr>
<td>8.988</td>
<td>52.465 C</td>
<td>$>=\ 9.0\ -\ 9.5$ mm</td>
<td></td>
</tr>
<tr>
<td>9.112</td>
<td>52.466 C</td>
<td>$>=\ 9.0\ -\ 9.5$ mm</td>
<td></td>
</tr>
<tr>
<td>7.502</td>
<td>52.365 D</td>
<td>$>=\ 9.5\ -\ 10.0$ mm</td>
<td></td>
</tr>
</tbody>
</table>

Die Daten werden unter folgenden Annahmen berücksichtigt:

- Aus den Daten wird der Mittelwert der entsprechenden Klasse angesetzt und auf $l/(s\cdot ha)$ umgerechnet.
- Für jedes Teileinzugsgebiet erfolgt eine flächengewichtete Verschneidung mit den Rasterfeldern der KOSTRA-Daten. Dieser Wert wird dann für alle Berechnungen von Einleitungen zugrunde gelegt, die aus diesem Teileinzugsgebiet in den Teilabschnitt des Gewässers einleiten. (Alternativ zu einer flächengewichteten Verschneidung könnten auch die Daten des nächstn KOSTRA-Rasterfeldes für das Teileinzugsgebiet angesetzt werden.)
- Für die Berechnungen werden unterschiedliche Dauerstufen (D =10, 15 und 30 Minuten) benötigt. Für jede Dauerstufe ist daher ein KOSTRA-Datensatz bereitzustellen. (Alternativ könnte auch eine Berechnung der Dauerstufen D = 10 bzw. 30 Minuten auf Grundlage des $r_{15,1}$ über den Zeitbeiwert nach REINHOLD von $\varphi = 1,263$ bzw. $\varphi = 0,615$ erfolgen (siehe z.B. FGSV 1987).)

3.1.5 Berechnung der Einleitungsabflüsse

An den jeweiligen Einleitungsstellen wird der jährliche Einleitungsabfluss $Q_{E1,i}$ wie folgt berechnet:

$$Q_{E1,i} = A_{red} \cdot \psi_S \cdot r_{D,1} + \sum Q_{d,zu,i} + Q_t - Q_{d,ab}$$

mit:
A_{red} \quad \text{versiegelte Fläche der Einleitungsstelle für das direkt angeschlossenen Einzugsgebiet [ha]}

\psi_{S} \quad \text{Abflussbeiwert [-]}

\gamma_{D,1} \quad \text{Regenspende der Dauer D (10, 15, oder 30 Min.) und der Jährlichkeit n=1 a [l/(s \cdot ha)]}

Q_{d,zu} \quad \text{ggf. vorh. Drosselabflüsse oberhalb liegender Einzugsgebiete [l/s]}

Q_{d,ab} \quad \text{ggf. vorh. Drosselabfluss am Entlastungsbauwerk der Einleitungsstelle [l/s]}

Q_{t} \quad \text{ggf. vorh. Trockenwetterabfluss aus dem direkt angeschlossenen Einzugsgebiet [l/s]}

- Für den Abflussbeiwert wird ein üblicher Wert von 0,85 angesetzt (u.a. NAFO 2004).

Hinweis:
- Der Abflussbeiwert wird mit den bereits in Abschnitt 3.1.1 zitierten Angaben von BECKER et al. (1998) für den Emscherraum abgeglichen. Für den Emscherraum wurde anhand von detaillierten Kanalnetzmodellen und Abflussmessungen die Abflussbeiwerte nach Tabelle 3.3 ermittelt. Für die Straßenflächen wird dieser mit 0,85 angegeben. Für die Grundstücksflächen ergibt sich die Summe A_{red} zu 15.050 ha und A_{u} zu 12.782 ha, woraus sich ebenfalls ein Abflussbeiwert von 0,85 errechnet. Der Abflussbeiwert von 0,85 für die Bewertungsmethodik ist somit plausibel und kann sowohl für die Grundstücks- als auch die Straßenflächen angesetzt werden.

Tabelle 3.3: Flächenbilanz und Abflussbeiwerte für den Emscherraum, BECKER et al. (1998)

<table>
<thead>
<tr>
<th>Flächenart</th>
<th>A_{red} (ha)</th>
<th>\psi</th>
<th>A_{u} (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>öffentliche Straßenflächen</td>
<td>6.450</td>
<td>0,85</td>
<td>5.483</td>
</tr>
<tr>
<td>Dachflächen</td>
<td>8.815</td>
<td>0,9</td>
<td>7.934</td>
</tr>
<tr>
<td>priv. Flächen schmutzig</td>
<td>4.945</td>
<td>0,85</td>
<td>4.203</td>
</tr>
<tr>
<td>priv. Flächen sauber</td>
<td>1.290</td>
<td>0,5</td>
<td>645</td>
</tr>
<tr>
<td>Summe</td>
<td>21.500</td>
<td></td>
<td>18.264</td>
</tr>
</tbody>
</table>

- Für jeden Nachweisraum wird der einjährige Einleitungsabfluss Q_{E1,vorh} als hydraulische Belastungsgröße durch Aufsummierung der den Nachweisraum belastenden Einleitungsabflüsse Q_{E1,i} ermittelt:

\[Q_{E1,vorh} = \sum Q_{E1,i} \]

3.2 Nachweisraum (geschlossenes Siedlungsgebiet)

Für die Bewertungsmethodik müssen Nachweissräume abgegrenzt werden, an deren Grenzen der hydraulische Stress in den Oberflächengewässern durch Misch- und Regenwasser-

Nach Merkblatt BWK-M 3 ist eine exakte Abgrenzung des Einflussbereiches zurzeit nicht möglich. Für die Abschätzung des stofflichen Einflussbereiches ist im Merkblatt eine Hilfgröße in Abhängigkeit von der mittleren Tiefe und der mittleren Fließgeschwindigkeit (bei MNQ) angegeben, die zwischen < 1,6 – 4,8 km liegt.

Flächendeckende Angaben zur mittleren Tiefe und mittleren Fließgeschwindigkeit liegen für NRW nicht vor. Über die Angaben des Fließgewässertypenatlas NRW in Verbindung mit den Leitbildern (MUNLV 2003b) lassen sich nur allgemeine Angaben zum Querprofil und zur Strömungsdiversität ableiten, die für eine Einteilung in die Kategorien des BWK-M 3 nicht geeignet sind.

Für die Abgrenzung des geschlossenen Siedlungsgebiets (Nachweisraum) wird daher von folgenden Annahmen ausgegangen:

- Für den Einflussbereich wird der Mittelwert des BWK-M3 mit 3,2 km zugrunde gelegt. Dieser Wert ist in Projekthe phase II auf Plausibilität zu prüfen.
- Ein geschlossenes Siedlungsgebiet beginnt mit der obersten Einleitungsstelle und endet, wenn eines der folgenden Kriterien erfüllt ist:
 - der Abstand von zwei aufeinander folgenden Einleitungsstellen beträgt mehr als 3,2 km
 - ein definierter Endpunkt aus den Verschneidungen wird mit den Talsperren oder Seen erreicht
 - \(A_{\text{EO}} > 5.000 \text{ km}^2 \) am Ende des Gewässerabschnitts ist (siehe Abschnitt 2.1.6)
 - der Anteil der versiegelten Fläche am natürlichen Gewässereinzugsgebiet < 1\% ist (siehe Abschnitt 2.1.6)

 Hinweis:
 - Bei der Abgrenzung über das Abstands kriterium ist zu berücksichtigen, dass Einflussbereiche z.B. von Einleitungen an abzweigenden Nebengewässern mit berücksichtigt werden.
- Endet in einem Gewässerabschnitt ein geschlossen Siedlungsgebiet, so werden für den Nachweis für den Gewässerabschnitt, wie vorgenannt, trotzdem alle Einleitungen des Gewässerabschnitts (zusätzlich zu den Oberstrom gelegenen Einleitungen) ange setzt, da die Lage der fiktiven Einleitungsstellen nicht eindeutig sind. Bei dem nächsten, Unterstrom liegenden geschlossenen Siedlungsgebiet werden aber
nur noch die Einleitungen berücksichtigt, die unterhalb der Abgrenzung des geschlosse-
nen Siedlungsgebietes aus dem Gewässerabschnitt liegen.

3.3 Signifikanzkriterium

Nach den Folgerungen von Abschnitt 2.1.7 wird folgendes Signifikanzkriterium des Merkblatt
BWK-M 3 verwendet:

\[
Q_{E1,zul} < 1,0 \cdot Hq_{1, pnat} \cdot \frac{A_{red}}{100} + x \cdot Hq_{1, pnat} \cdot A_{Eo} \ [l/s]
\]

mit

- \(HQ_{1, pnat}\): potenziell naturnahe jährliche Hochwasserspende \([l/(s \cdot km^2)]\)
- \(A_{red}\): befestigte Fläche des geschlossenen Siedlungsgebietes \([ha]\)
- \(A_{Eo}\): oberirdisches Einzugsgebiet des Gewässers \([km^2]\)
- \(QE_{1, zul}\): zulässiger kritischer jährlicher Einleitungsabfluss \([l/s]\)
- \(x\): Multiplikationsfaktor für die zulässige Abflusserhöhung für anthropogene Ein-
flüsse, in der Regel 0,1

Die Anwendung des Kriteriums erfolgt unter folgenden Annahmen:

- Für den X-Faktor liegen für NRW keine regionalisierten Daten vor, weshalb dieser mit
dem Standardwert \(x = 0,1\) des Merkblatt BWK-M 3 angesetzt wird.
- Nach den Folgerungen von Abschnitt 2.2.4 werden für die \(Hq_{1, pnat}\)-Werte für die verein-
fachte Bewertung im Rahmen der Bewertungsmethodik die Mittelwerte aus den Hüllkur-
ven nach Anhang 4, BWK-M 3 als Funktion des Gefälles und der Einzugsgebietsgröße
angesetzt (Beispiel siehe Bild 3.1).
Bild 3.1 Potenziell naturnahe Hochwasserabflussspende (Hq1,pnat) in Abhängigkeit vom mittleren Gefälle für Einzugsgebietesgrößen von 0 – 1.800 km², Beispiel für den Gefällebereich > 1% nach Merkblatt BWK-M 3

Hinweise:
- Da das Merkblatt BWK-M 3 keine zahlenmäßigen Hinweise dazu liefert, ab welcher Gewässernetzdichte / Fließlänge bzw. ab welchem Wald- oder Kulturlandanteil der obere bzw. untere Bereich der Hüllkurven gewählt werden sollte, werden die Mittelwerte der Hüllkurvenwerte angesetzt.
 In Projektphase II sollte geprüft werden, ob aufgrund der genannten Kriterien in Abgleich mit berechneten Werten begründet der obere bzw. untere Bereich der Hüllkurvenwerte gewählt werden sollte.

- Die Ermittlung des mittleren Gewässergefälles erfolgt mit den Gefälleangaben der zum oberen Einzugsgebiet (AEO) zugehörigen Gewässerabschnitte als flächengewichteter Mittelwert.
- Das Maß der hydraulischen Belastung eines Gewässerabschnitts wird als Verhältnis des vorhandenen Einleitungsabflusses QE1,vorh zum zulässigen Einleitungsabfluss QE1,zul ermittelt:

 \[\text{hydB Gewässerabschnitt} = \frac{Q_{E1,vorh}}{Q_{E1,zul}} \]

3.4 Ermittlung der oberen Einzugsgebiete

Für die Anwendung des Signifikanzkriteriums ist eine Ermittlung des oberen Einzugsgebietes AEO für jeden Nachweisraum erforderlich. Die Ermittlung erfolgt mit folgenden Annahmen:

- Für jeden Gewässerabschnitt erfolgt die Ermittlung des direkten oberirdischen Teileinzugsgebietes auf GIS-Basis wie folgt:
 - Berücksichtigung der Einzugsgebietsgrenzen nach der Gewässerstationierungskarte (GSK) 3. Auflage des Landesumweltamtes (LUA)
 - Generierung der Teileinzugsgebietsgrenzen für die Gewässerabschnitte mit Hilfe des digitalen Geländemodells über die Orographie im „Bergland“ und über geometrische Kriterien im Flachland (z.B. Rasterbildung des Einzugsgebietes und Zuordnung zu einem Gewässer über den nächsten Abstand)
 - Für die Generierung der Teileinzugsgebietsgrenzen sind entsprechende Algorithmen auf GIS-Basis zu programmieren. Eine Verfeinerung dieser Algorithmen und eine teilweise händische Nachbearbeitung sind im Rahmen der Projektphase II erforderlich.
- Die Karte der Teileinzugsgebiete für die Gewässerabschnitte stellt eine Grundlagekarte dar, die einmalig erstellt wird.

- Jeder Gewässerabschnitt und jedes zugehörige Teileinzugsgebiet werden eindeutig mit der gleichen Nummer benannt.

- Ausgangspunkt für die Benennung ist die Gewässerkennzahl der GSK zuzüglich einer laufenden Ordnungsnummer (drei Ziffern) für den jeweiligen Gewässerabschnitt, beginnend von der Mündung an.

- Das obere Einzugsgebiet A_{E0} für jeden Nachweisraum wird durch Summierung der Flächengrößen der oberhalb gelegenen Teileinzugsgebiete der Gewässerabschnitte zuzüglich des Teileinzugsgebietes des betrachteten Gewässerabschnitts ermittelt.

3.5 Ergebnisdarstellung

Die Ergebnisse werden auf einer Detailebene und einer Aggregationsebene wie folgt dargestellt:

Detailebene:
- Für jeden Gewässerabschnitt wird die hydraulische Belastung dargestellt.
- Die Belastung wird anhand des Maßes für die hydraulische Belastung ($hydB_{Gewässerabschnitt}$) in insgesamt 5 Belastungsklassen (0 – IV) eingeteilt (Bild 3.2).
- Die Belastungsklasse 0 stellt Gewässerabschnitte dar, bei denen das Verhältnis von $Q_{E1,vorh} / Q_{E1,zul} \leq 1$ ist und somit keine zu hohe Belastung des Gewässers durch Niederschlagswassereinleitungen zu erwarten ist.
- Die Belastungsklassen I – IV stellen Klassen dar, bei denen das Verhältnis von $Q_{E1,vorh} / Q_{E1,zul} > 1$ und somit eine zu hohe Belastung des Gewässerabschnittes nach dem Signifikanzkriterium und dem vereinfachten Vorgehen der Bewertungsmethodik berechnet wird.
- Die Zuordnung zu den Belastungsklassen soll in Projektphase II überprüft werden. Ggf. ist für Detailauswertungen für den späteren Anwender auch eine Aufgliederung der Belastungsklasse I in weitere Unterklassen hilfreich, was derzeit aber nicht vorgesehen ist.

Aggregationsebene

Die Ergebnisse der Detailebene werden aggregiert, so dass für jeden Oberflächenwasserkörper nach Wasserrahmenrichtlinie eine Bewertung der hydraulischen Belastung ausgewiesen wird. Dazu wird eine längengemittelte Belastung aus den Einzelbelastungen der zugehörigen Abschnitte aus der Detailebene für die Länge des Wasserkörpers berechnet.

3.6 Umgang mit Datenlücken

Treten in den REBEKA-, NIKLAS-KOM oder NIKLAS-IGL-Daten an wesentlichen Stellen Datenlücken auf, so können die Daten für eine Berechnung von detaillierten Einleitungsstellen nicht berücksichtigt werden. Die versiegelten Flächen werden dann über die ATKIS-Verschneidung über die fiktiven Einleitungsstellen erfasst. Fehlende Daten in den REBEKA-, NIKLAS-KOM oder NIKLAS-IGL-Daten werden in der Ergebnistabelle und durch Einfärbung der Bauwerksstandorte so ausgewiesen bzw. visualisiert, dass ein nicht vollständiger Datensatz auffällig und eine Ergänzung des Datenbestandes damit möglich wird.

3.7 Neue GIS-Tools

3.7.1 Veranlassung

Für die Funktionsfähigkeit der entwickelten Tools sind folgende Daten erforderlich:

- Gewässerläufe als Linien-Shapes
- Einzugsgebiete als Flächen-Shapes
GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswassereinleitungen

- Digitales Geländemodell (DGM), 10x10m-Raster (oder feiner)

Für weiter gehende Auswertungen wurden außerdem verwendet:
- ATKIS-Daten als Flächen-Shapes (Ortslagen, versiegelte Flächen, bewaldete Flächen)
- REBEKA-Daten als Punkt-Shapes
- Straßennetz als Linien-Shapes

3.7.2 Gewässerabschnitte
Da die verfügbaren Linien-Shapes jeweils ein komplettes Fließgewässer darstellen, war es zunächst erforderlich ein Makro zu erstellen, das die vorhandenen Gewässerabschnitte anhand der Zuflüsse in Abschnitte zerteilt. Dabei wurden lediglich Gewässer mit Gewässerkennzahl (GKZ) als Zuflüsse berücksichtigt.
Jeder Abschnitt wurde mit einer Bezeichnung versehen, die sich aus der GKZ des Gewässers und der dreistelligen Nummer des Abschnitts ergibt. Die Zählung beginnt an der Mündung eines Gewässers mit 001. GKZ und Abschnittnummer werden durch einen Bindestrich getrennt.

Verknüpfungen der Abschnitte:
Für viele Auswertungen ist es erforderlich, das gesamte oberhalb liegende Einzugsgebiet eines Gewässerabschnitts zu ermitteln. Um nicht jedes Mal komplizierte GIS-Abfragen starten zu müssen, wurden alle Abschnitte jeweils mit den beiden oberhalb zusammenfließenden wie auch mit dem unterhalb abschließenden Abschnitt verknüpft. Die Verknüpfung erfolgt dadurch, dass in vier speziellen Spalten der Abschnitt-Attributttabelle folgende Angaben vermerkt wurden:
- Bezeichnung des Abschnitts (z.B. „2787-012“)
- Bezeichnung des unterhalb folgenden Abschnitts (z.B. „2787-011“)
- Bezeichnung des ersten oberhalb liegenden Abschnitts (z.B. „2787-013“)
- Bezeichnung des zweiten oberhalb liegenden Abschnitts (z.B. „27873-001“)

Bei den beiden oberhalb liegenden Abschnitten wird nicht unterschieden zwischen Hauptgewässer und Zufluss. An der Mündung erfolgt eine Verknüpfung mit dem entsprechenden Abschnitt des übergeordneten Gewässers, im obersten Abschnitt (Quelle) bleiben die Felder für die oberhalb liegenden Abschnitte leer.

3.7.3 Abgrenzung von Teileinzugsgebieten
Da auch die Abgrenzung der Teileinzugsgebiete für jeden einzelnen Gewässerabschnitt nicht verfügbar war, wurde ein Makro entwickelt, das versucht, über das Digitale Gelände-Modell (DGM) das Oberflächenrelief abzutasten und daraus mutmaßliche Wasserscheiden
zu identifizieren. Die Teileinzugsgebiete übernehmen dabei jeweils die Bezeichnungen der Gewässerabschnitte und werden wie diese mit den beiden oberhalb liegenden Einzugsgebieten wie auch mit dem unterhalb liegenden verknüpft.
Für die Testgebiete wurden durch das entsprechende Makro Teileinzugsgebiete generiert; es war zum Teil noch sehr viel „Handarbeit“ erforderlich, um die Abgrenzung halbwegs plausibel erscheinen zu lassen.

3.7.4 Weitere Auswertungen
Darüber hinaus können über die Verknüpfungen der Abschnitte und Einzugsgebiete schnell und zuverlässig folgende Abfragen erfolgen:
• Welche Gewässerabschnitte entwässern direkt oder indirekt in einen selektierten Abschnitt? (Oberläufe)
• Wohin entwässert der selektierte Abschnitt direkt und indirekt? (Unterläufe)
• Welches ist das gesamte Einzugsgebiet des selektierten Abschnitts?
• Welche Einzugsgebiete erhalten Wasser aus dem selektierten Abschnitt?

3.7.5 Kurzbeschreibung der Makros
Alle Makros bearbeiten jeweils die aktuell vom Anwender selektierten Objekte von bestimmten Layern und legen die Ergebnisse wiederum in anderen Layern ab. In der aktuellen Version sind die zu verwendenden Layer als Konstante vorgegeben; in späteren Versionen sollten die Layer konfigurierbar sein.
Im Folgenden werden die einzelnen Makros in ihrem Ablauf beschrieben.

<table>
<thead>
<tr>
<th>Makro 1: CreateWaterbodies</th>
<th>verwendet Layer: Gewässerläufe (Linien)</th>
</tr>
</thead>
<tbody>
<tr>
<td>erzeugt Objekte:</td>
<td>Gewässerabschnitte (Linien), Gabelpunkte (Punkte)</td>
</tr>
<tr>
<td>modifiziert Objekte:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Aufgabe:
• erzeugt Gewässerabschnitte

Funktionsweise:
GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswassereinleitungen

- ermittelt zunächst alle Gewässer, die mit dem selektierten Gewässer räumlich in Kontakt stehen (Zuflüsse, Gewässer höherer Ordnung)
- erzeugt an den Kontaktstellen Punktojekte, die als Gabelpunkte in einem gesonderten Layer festgehalten werden
- erzeugt eine Kopie des selektierten Gewässers, zerteilt diese an jedem Gabelpunkt in Teilstücke, die jeweils einem Gewässerabschnitt entsprechen
- vergibt aus GKZ und Abschnittsnummer neue Bezeichnungen für die Abschnitte
- vermerkt die Kilometrierung von Anfangs- und Endpunkt, bezogen auf das selektierte Gewässer
- übergibt die Abschnittsbezeichnungen auch an die Gabelpunkte, die somit ebenfalls Informationen über die am Gabelpunkt beteiligten Abschnitte tragen.

Makro 2: CreateCatchments

<table>
<thead>
<tr>
<th>verwendete Layer</th>
<th>Einzugsgebiete (Flächen), Gewässerabschnitte (Linien)</th>
</tr>
</thead>
<tbody>
<tr>
<td>erzeugt Objekte</td>
<td>Teileinzugsgebiete (Flächen)</td>
</tr>
<tr>
<td>modifiziert Objekte</td>
<td>keine</td>
</tr>
</tbody>
</table>

Aufgabe:
- erzeugt Teileinzugsgebiete für die Gewässerabschnitte

Funktionsweise:
- ermittelt alle Gewässerabschnitte, die innerhalb des selektierten Einzugsgebietes liegen
- zerteilt das Einzugsgebiet an Hand der Gewässerabschnitte (bei Quellabschnitten: deren Verlängerung bis zur Gebietsgrenze) in Sektoren, die nicht von Gewässern (bzw. –abschnitten) durchschnitten werden
- setzt aus jeweils zwei der aus den Sektorengrenzen und Wasserscheiden gebildeten Teilflächen ein Teileinzugsgebiet zusammen (linke und rechte Seite des Gewässerabschnitts).
- überträgt die Bezeichnungen der Gewässerabschnitte und deren Verknüpfungen auf die Teileinzugsgebiete
- überträgt die Sachdaten des Einzugsgebiets auf die Teileinzugsgebiete

Makro 3a/b: ShowCatchment

<table>
<thead>
<tr>
<th>verwendete Layer</th>
<th>Einzugsgebiete (Flächen), Gewässerabschnitte (Linien)</th>
</tr>
</thead>
<tbody>
<tr>
<td>erzeugt Objekte</td>
<td>keine</td>
</tr>
<tr>
<td>modifiziert Objekte</td>
<td>Einzugsgebiete (Sachdaten), Gewässerabschnitte (Sachdaten)</td>
</tr>
</tbody>
</table>

Aufgabe:
- zeigt oberhalb oder unterhalb gelegene Teileinzugsgebiete und/oder Gewässerabschnitte an
modifiziert Sachdaten (Flächengröße des Gesamteinzugsgebiets, mittleres Gefälle eines Gewässerabschnitts)

Funktionsweise:
- ermittelt für den selektierten Gewässerabschnitt und/oder dessen Teileinzugsgebiet den Oberlauf bzw. das Gesamteinzugsgebiet (Makro 3a) oder den Unterlauf bzw. die unterhalb gelegenen Teileinzugsgebiete (Makro 3b)
- trägt bei jedem der beteiligten Teileinzugsgebiete die Flächengröße des aufsummierten Gesamteinzugsgebiets ein
- trägt bei jedem der beteiligten Gewässerabschnitte das mittlere Gefälle ein (Höhen- differenz/Abschnittslänge in Prozent)
- zeigt die ermittelten Gewässerabschnitte und/oder Teileinzugsgebiete durch Selektion an.

Makro 4: CreateDischarge
verwendet Layer | Einzugsgebiete (Flächen), Gewässerabschnitte (Linien), Regenbecken (Punkte)
erzeugt Objekte | Zuflüsse und Einleiter (Linien)
modifiziert Objekte | keine

Aufgabe:
- konstruiert direkte Zuflüsse aus den Regenbecken eines Teileinzugsgebiets in den Gewässerabschnitt, in Ermangelung genauerer Daten als kürzeste Verbindungslinie

Funktionsweise:
- ermittelt alle Regenbecken (aus REBEKA), die innerhalb des selektierten Einzugsgebiets liegen
- ermittelt für jedes der Becken den nächstliegenden Punkt auf dem Gewässerabschnitt
- konstruiert einen mutmaßlichen Zufluss als direkte Verbindungslinie zwischen dem Becken und dem nächstliegenden Punkt auf dem Gewässerabschnitt
- überträgt die Bezeichnung des Gewässerabschnitts sowie Zuflusslänge und Kilometerierung der Einleiterstelle auf den Zufluss
- überträgt die Sachdaten des Beckens auf den Zufluss

Makro 5: IntersectVillageAreas
verwendet Layer | Einzugsgebiete (Flächen), Ortslagen (Flächen)
erzeugt Objekte | EZG-Ortslagen (Flächen)
modifiziert Objekte | keine

Aufgabe:
- Hilfsmakro zur Erzeugung von Verschneidungsflächen der Ortslagen mit den Einzugsgebieten, vereinfacht Makro 6

Funktionsweise:
GIS-gestützte Beurteilung der hydraulischen Belastung von Fließgewässern durch Niederschlagswassereinleitungen

- ermittelt Ortslagen, die innerhalb des selektierten Einzugsgebietes liegen oder dessen Grenzen schneiden
- verschneidet Ortslagen mit dem Einzugsgebiet, vereinigt alle verschneitennnten Ortslagen innerhalb eines Einzugsgebiets zu einem Flächenobjekt
- legt die verschneitennnten Ortslagen im Layer EZG-Ortslagen ab

Makro 6: GetIntersectionData
verwendet Layer | Einzugsgebiete (Flächen), EZG-Ortslagen (Flächen), ATKIS (Flächen), Straßen (Linien)
erzeugt Objekte | keine
modifiziert Objekte | Einzugsgebiete (Sachdaten)

Aufgabe:
- verschneidet Teileinzugsgebiet mit ATKIS-Flächen und Straßennetz, ermittelt daraus Flächengrößen für ATKIS-Objektarten und Straßenlängen

Funktionsweise:
- ermittelt Ortslagen, ATKIS-Flächen und Straßen, die innerhalb des selektierten Einzugsgebietes liegen oder dessen Grenzen schneiden
- verschneidet ATKIS-Flächen mit dem Einzugsgebiet
- verschneidet Straßen mit den verschneitennnten ATKIS-Flächen
- verschneidet Straßen mit dem Einzugsgebiet
- verschneidet Straßen mit den EZG-Ortslagen
- summiert alle verschneitennnten ATKIS-Flächen nach Objektarten getrennt
- summiert alle verschneitennnten Straßenlängen nach Objektarten getrennt für das gesamte Einzugsgebiet, für die EZG-Ortslagen sowie für einzelne ATKIS-Objektarten
4 Methodenanwendung

4.1 Beispielgebiet Rotbach

Bild 4.1 Lageplan des Rotbaches mit Teileinzugsgebietsgrenzen der Gewässerabschnitte

Verfügung gestellt wurde (DURCHSCHLAG & BEVER 2005a, DURCHSCHLAG & BEVER 2005b).

4.1.1 Gewässerabschnitte und Teileinzugsgebiete

4.1.2 Zuordnung von Regenspenden

4.1.3 Aufbereitung der REBEKA-Daten

Regenbecken, die im REBEKA-Kataster erfasst sind, befinden sich nur am untersten Gewässerabschnitt 2774-001 (siehe grüne Dreiecke in Bild 4.1). In Tabelle 4.1 sind die relevanten Daten zusammengefasst.

<table>
<thead>
<tr>
<th>Bauwerk 1)</th>
<th>A_{red} 1) [ha]</th>
<th>Art 1) [-]</th>
<th>Q_{d,ab} 1) [l/s]</th>
<th>System 1) [-]</th>
<th>Gefälle r_{D,1} [%]</th>
<th>r_{0,1} [l/(s·ha)]</th>
<th>Σ Q_{d,zu,i} [l/s]</th>
<th>Q_{E1} 2) [l/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUB Hiesfeld-Nord</td>
<td>23,0</td>
<td>DB</td>
<td>29,0</td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>2034</td>
<td></td>
</tr>
<tr>
<td>RUB Hiesfeld-Süd Kreisverkehr</td>
<td>15,0</td>
<td>DB</td>
<td>40,0</td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>1305</td>
<td></td>
</tr>
<tr>
<td>RUB Sternkrader Straße</td>
<td>5,0</td>
<td>SKO</td>
<td>10,0</td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>RKB Hans-Böckler-Straße</td>
<td>10,0</td>
<td></td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>897</td>
<td></td>
</tr>
<tr>
<td>RKB RW-Behandlungsanl. Krengelstr.</td>
<td>6,0</td>
<td></td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>538</td>
<td></td>
</tr>
<tr>
<td>RKB Marktstraße</td>
<td>3,0</td>
<td></td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>RKB Rabenkamp/Am Steppenkamp</td>
<td>3,0</td>
<td></td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>RKB Innenstadt</td>
<td>39,0</td>
<td></td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>3497</td>
<td></td>
</tr>
<tr>
<td>RKB Kanalstauraum Wiesenstraße</td>
<td>4,0</td>
<td></td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>RRB Fichtenstraße</td>
<td>1,0</td>
<td>T</td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RKB Fichtenstraße</td>
<td>2,0</td>
<td></td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RRB Am Kirchberg</td>
<td>1,0</td>
<td>M</td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RKB Kirchstraße/Am Freibad</td>
<td>8,0</td>
<td></td>
<td></td>
<td>0,18</td>
<td>105,5</td>
<td>0,0</td>
<td>717</td>
<td></td>
</tr>
</tbody>
</table>

1) Angaben aus dem REBEKA-Kataster
2) \(Q_{E1} = A_{red} \cdot \psi_S \cdot r_{D,1} + \Sigma Q_{d,zu,i} + Q_t - Q_{d,ab} \) mit \(\psi_S = 0,85 \) und \(Q_t = 0 \) l/s
Das RKB Fichtenstraße wird in Einheit mit einem RRB betrieben und hat daher keinen Einleitungsabfluss in das Gewässer. Beim RRB Fichtenstraße ist kein Drosselabfluss angegeben, so dass dieses Bauwerk und die damit verbundene Retentionswirkung nicht berücksichtigt werden können. Die angeschlossene Fläche wird nach dem Vorgehen der Bewertungsmethodik daher über die spätere ATKIS-Verschneidung erfasst und fließt so als Trenngebietfläche ohne Retention mit in die Berechnung ein.

Das RRB Am Kirchberg ist ein Mischwasser-RRB. Der Drosselabfluss wird zur KA weitergeleitet und es erfolgt kein Abfluss ins Gewässer.

In der Tabelle 4.2 sind die in den REBEKA-Daten und die im BWK-M 3 Nachweis angegebenen Drosselabflüsse gegenübergestellt.

<table>
<thead>
<tr>
<th></th>
<th>REBEKA (Q_{d,ab}) [l/s]</th>
<th>Nachweis (^1) (Q_{d,ab}) [l/s]</th>
<th>Abweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RÜB Hiesfeld-Nord</td>
<td>29,0</td>
<td>29,3</td>
<td>-1,0</td>
</tr>
<tr>
<td>RÜB Hiesfeld-Süd Kreisverkehr</td>
<td>40,0</td>
<td>40,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜB Sternkrader Straße</td>
<td>10,0</td>
<td>8,6</td>
<td>16,3</td>
</tr>
</tbody>
</table>

\(^1\) vereinfachter Nachweis BWK-M 3 von der Durchschlag & Bever Ing.ges. mbH

Die auftretenden Abweichungen der Drosselabflüsse beim RÜB Hiesfeld-Nord und Hiesfeld-Süd sind vernachlässigbar. Beim RÜB Sternkrader Straße treten prozentual höhere Abweichungen auf. Absolut gesehen ist die Differenz der angegebenen Drosselabflüsse von 1,4 l/s auf das Gesamtergebnis vernachlässigbar.

In Tabelle 4.3 sind die Angaben zu den angeschlossenen Flächen gegenübergestellt. Hier zeigen sich teilweise deutliche Abweichungen. In der Summe ergeben sich Abweichungen von -18,4 %. Wahrscheinlich befinden sich die REBEKA-Daten nicht auf dem Stand des BWK-M 3 Nachweises.
Tabelle 4.3: Vergleich der Flächenangaben

<table>
<thead>
<tr>
<th></th>
<th>REBEKA Bewertungsmethodik</th>
<th>Bewertungsmethodik</th>
<th>Nachweis 2)</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A_{\text{red}})</td>
<td>(A_{\psi})(^1)</td>
<td>(A_{\psi})(^2)</td>
<td>(%)</td>
</tr>
<tr>
<td>RUB Hiesfeld-Nord</td>
<td>23,00</td>
<td>19,55</td>
<td>24,66</td>
<td>-20,7</td>
</tr>
<tr>
<td>RUB Hiesfeld-Süd Kreisverkehr</td>
<td>15,00</td>
<td>17,55</td>
<td>16,01</td>
<td>-20,4</td>
</tr>
<tr>
<td>RUB Sternkramer Straße</td>
<td>5,00</td>
<td>4,25</td>
<td>6,61</td>
<td>-35,7</td>
</tr>
<tr>
<td>RKB Hans-Böckler-Straße</td>
<td>10,00</td>
<td>8,50</td>
<td>10,47</td>
<td>-18,8</td>
</tr>
<tr>
<td>RKB RW-Behandlungsanl. Krengelstr.</td>
<td>6,00</td>
<td>10,10</td>
<td>4,78</td>
<td>6,7</td>
</tr>
<tr>
<td>RKB Marktstraße</td>
<td>3,00</td>
<td>2,55</td>
<td>2,49</td>
<td>2,4</td>
</tr>
<tr>
<td>RKB Rabenkamp/Am Steppenkamp</td>
<td>3,00</td>
<td>2,55</td>
<td>3,80</td>
<td>-32,9</td>
</tr>
<tr>
<td>RKB Innenstadt</td>
<td>39,00</td>
<td>33,15</td>
<td>39,07</td>
<td>-15,2</td>
</tr>
<tr>
<td>RKB Kanalstauraum Wiesenstraße</td>
<td>4,00</td>
<td>3,40</td>
<td>4,66</td>
<td>-27,0</td>
</tr>
<tr>
<td>Summe</td>
<td>108,00</td>
<td>91,80</td>
<td>112,55</td>
<td>-18,4</td>
</tr>
</tbody>
</table>

\(^1\) \(A_{\psi} = A_{\text{red}} \cdot \psi_{S} \) mit \(\psi_{S} = 0,85 \) nach Bewertungsmethodik
\(^2\) vereinfachter Nachweis BWK-M 3 von der Durchschlag & Bever Ing.ges. mbH

Tabelle 4.4: Vergleich der einjährlichen Einleitungsabflüsse

<table>
<thead>
<tr>
<th></th>
<th>Bewertungsmethodik (Q_{E1})(^1)</th>
<th>Nachweis (^2) (Q_{E1})</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[l/s]</td>
<td>[l/s]</td>
<td>(%)</td>
</tr>
<tr>
<td>RUB Hiesfeld-Nord</td>
<td>2034</td>
<td>2051</td>
<td>-0,8</td>
</tr>
<tr>
<td>RUB Hiesfeld-Süd Kreisverkehr</td>
<td>1305</td>
<td>1304</td>
<td>0,1</td>
</tr>
<tr>
<td>RUB Sternkramer Straße</td>
<td>438</td>
<td>492</td>
<td>-10,8</td>
</tr>
<tr>
<td>RKB Hans-Böckler-Straße/Bachstraße</td>
<td>897</td>
<td>540</td>
<td>66,1</td>
</tr>
<tr>
<td>RKB RW-Behandlungsanl. Krengelstr.</td>
<td>538</td>
<td>373</td>
<td>44,2</td>
</tr>
<tr>
<td>RKB Marktstraße</td>
<td>269</td>
<td>258</td>
<td>4,3</td>
</tr>
<tr>
<td>RKB Rabenkamp/Am Steppenkamp</td>
<td>269</td>
<td>91</td>
<td>195,6</td>
</tr>
<tr>
<td>RKB Innenstadt</td>
<td>3497</td>
<td>2132</td>
<td>64,0</td>
</tr>
<tr>
<td>RKB Kanalstauraum Wiesenstraße</td>
<td>359</td>
<td>353</td>
<td>1,6</td>
</tr>
<tr>
<td>Summe</td>
<td>9606</td>
<td>7593</td>
<td>26,5</td>
</tr>
</tbody>
</table>

\(^1\) nach Bewertungsmethodik
\(^2\) vereinfachter Nachweis BWK-M 3 von der Durchschlag & Bever Ing.ges. mbH

4.1.4 Aufbereitung der NIKLAS-KOM Daten

Aus den NIKLAS-KOM Daten kann entnommen werden, dass die Kläranlage Dinslaken in den Rotbach einleitet. Der Regenwetterzufluss biologisch behandelt ist mit 301 l/s angegeben. Dieser Abfluss ist nach der Bewertungsmethodik als Einleitungsabfluss zu berücksichti-
gen. Im vorliegenden vereinfachten Nachweis wird ein Abfluss aus der Kläranlage von 376 l/s angesetzt.

4.1.5 Aufbereitung der NIKLAS-IGL Daten
Für den Rotbach sind in den NIKLAS-IGL Daten keine Einleiter verzeichnet.

4.1.6 Ermittlung der Trenngebiet- und Straßenflächen ohne Behandlungsanlagen und deren Einleitungsabflüsse
Zur Ermittlung der einleitungsrelevanten befestigten Flächen \(A_{\text{red,TS,Teileinzugsgebiet}} \), die zusätz-lich zu den in den Katastern erfassten Flächen zu berücksichtigen sind, werden die ATKIS-Verschnei-dungen gemäß der Bewertungsmethodik durchgeführt. Tabelle 4.5 zeigt eine Übersicht über die ermittelten Flächen. Eine Abminderung der Trenngebietflächen ist nicht erforderlich, so dass \(A_{\text{red,TS,Teileinzugsgebiet}} = A_{\text{red,TS,Teileinzugsgebiet,abgem.}} \). Die Lage der einzelnen Abschnitte kann der Anlage 4.1 entnommen werden.

Tabelle 4.5: Ergebnisse aus den ATKIS-Verschneidungen

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>(A_{\text{E,TEZG}})</th>
<th>(A_{\text{E,K,TEZG}})</th>
<th>(A_{\text{red,gesamt,TEZG}})</th>
<th>(A_{\text{red,gesamt,Einleitung}})</th>
<th>(A_{\text{red,TS,TEZG}})</th>
<th>(A_{\text{red,TS,TEZG, abgem.}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2774-001</td>
<td>1121,9</td>
<td>689,5</td>
<td>347,7</td>
<td>117,0</td>
<td>230,7</td>
<td>230,7</td>
</tr>
<tr>
<td>2774-002</td>
<td>40,5</td>
<td>2,2</td>
<td>1,1</td>
<td>0,0</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>2774-003</td>
<td>31,6</td>
<td>2,1</td>
<td>1,0</td>
<td>0,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>2774-004</td>
<td>59,1</td>
<td>6,5</td>
<td>3,0</td>
<td>0,0</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>2774-005</td>
<td>46,5</td>
<td>3,4</td>
<td>1,6</td>
<td>0,0</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td>277492-001</td>
<td>338,7</td>
<td>12,9</td>
<td>6,5</td>
<td>0,0</td>
<td>6,5</td>
<td>6,5</td>
</tr>
<tr>
<td>277494-001</td>
<td>296,2</td>
<td>28,8</td>
<td>13,6</td>
<td>0,0</td>
<td>13,6</td>
<td>13,6</td>
</tr>
<tr>
<td>277496-001</td>
<td>246,0</td>
<td>28,5</td>
<td>12,5</td>
<td>0,0</td>
<td>12,5</td>
<td>12,5</td>
</tr>
<tr>
<td>277498-001</td>
<td>263,1</td>
<td>17,5</td>
<td>8,9</td>
<td>0,0</td>
<td>8,9</td>
<td>8,9</td>
</tr>
<tr>
<td>2774-006</td>
<td>26,7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>2774-007</td>
<td>71,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>2774-008</td>
<td>47,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>2774-009</td>
<td>119,9</td>
<td>8,8</td>
<td>4,2</td>
<td>0,0</td>
<td>4,2</td>
<td>4,2</td>
</tr>
<tr>
<td>2774-010</td>
<td>73,1</td>
<td>11,9</td>
<td>5,7</td>
<td>0,0</td>
<td>5,7</td>
<td>5,7</td>
</tr>
<tr>
<td>2774-011</td>
<td>368,0</td>
<td>92,9</td>
<td>44,9</td>
<td>0,0</td>
<td>44,9</td>
<td>44,9</td>
</tr>
<tr>
<td>277412-001</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>2774132-001</td>
<td>128,1</td>
<td>20,5</td>
<td>10,1</td>
<td>0,0</td>
<td>10,1</td>
<td>10,1</td>
</tr>
<tr>
<td>2774134-001</td>
<td>71,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>277414-001</td>
<td>94,5</td>
<td>3,8</td>
<td>1,9</td>
<td>0,0</td>
<td>1,9</td>
<td>1,9</td>
</tr>
<tr>
<td>277416-001</td>
<td>112,6</td>
<td>2,3</td>
<td>1,4</td>
<td>0,0</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>277418-001</td>
<td>56,3</td>
<td>0,4</td>
<td>0,3</td>
<td>0,0</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>27742-001</td>
<td>119,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>27742-002</td>
<td>399,6</td>
<td>40,6</td>
<td>18,4</td>
<td>0,0</td>
<td>18,4</td>
<td>18,4</td>
</tr>
<tr>
<td>27742-003</td>
<td>463,3</td>
<td>34,0</td>
<td>16,1</td>
<td>0,0</td>
<td>16,1</td>
<td>16,1</td>
</tr>
<tr>
<td>277422-001</td>
<td>51,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>277422-002</td>
<td>60,5</td>
<td>0,1</td>
<td>0,1</td>
<td>0,0</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>2774222-001</td>
<td>130,5</td>
<td>4,7</td>
<td>2,6</td>
<td>0,0</td>
<td>2,6</td>
<td>2,6</td>
</tr>
<tr>
<td>277424-001</td>
<td>319,1</td>
<td>12,3</td>
<td>5,4</td>
<td>0,0</td>
<td>5,4</td>
<td>5,4</td>
</tr>
</tbody>
</table>

1) TEZG=Teileinzugsgebiet
Der vorliegende vereinfachte Nachweis nach BWK-M 3 bezieht sich nur auf den Gewässerabschnitt 2774-001 (siehe Bild 4.1). In Tabelle 4.6 sind die für diesen Abschnitt relevanten Flächenangaben aus dem vereinfachten Nachweis und gemäß der Bewertungsmethodik gegenübergestellt.

Tabelle 4.6: Flächenbilanz (Abschnitt 2774-001)

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Bewertungsmethodik</th>
<th>Nachweis</th>
<th>Abweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{E,k})</td>
<td>ha</td>
<td>689,5</td>
<td>452,3</td>
</tr>
<tr>
<td>(A_{red,gesamt,Teileinzugsgebiet})</td>
<td>ha</td>
<td>347,7</td>
<td>191,6</td>
</tr>
<tr>
<td>mittlerer Befestigungsgrad</td>
<td>[-]</td>
<td>0,50</td>
<td>0,42</td>
</tr>
<tr>
<td>(A_{red,Einleitung,Teileinzugsgebiet})</td>
<td>ha</td>
<td>117,0</td>
<td>112,6</td>
</tr>
<tr>
<td>(A_{red,TS,Teileinzugsgebiet})</td>
<td>ha</td>
<td>230,7</td>
<td>79,0</td>
</tr>
<tr>
<td>(A_{U,gesamt,Teileinzugsgebiet})</td>
<td>ha</td>
<td>295,5</td>
<td>191,6</td>
</tr>
<tr>
<td>(A_{U,Einleitung,Teileinzugsgebiet})</td>
<td>ha</td>
<td>99,5</td>
<td>112,6</td>
</tr>
<tr>
<td>(A_{U,TS,Teileinzugsgebiet})</td>
<td>ha</td>
<td>196,1</td>
<td>79,0</td>
</tr>
</tbody>
</table>

1) nach Bewertungsmethodik
2) vereinfachter Nachweis BWK-M 3 von der Durchschlag & Bever Ing.ges. mbH
3) inkl. \(A_{u}\) des RKB Kirchstraße und des RRB Am Fichtenberg

Die gemäß der Bewertungsmethodik ermittelte Trenngebiete- und Straßenfläche (\(A_{U,TS,Teileinzugsgebiet}\)) ohne Behandlung weicht deutlich von der Fläche aus dem Nachweis ab. Wesentliche Ursachen dafür sind ein größeres zugrunde gelegtes Einzugsgebiet und ein zu hoher Befestigungsgrad bei der Bewertungsmethodik im Vergleich zum BWK-M 3 Nachweis.

Im Einzugsgebietsplan aus der Generalentwässerungsplanung der Stadt Dinslaken weist die eingezeichnete Wasserscheide einen anderen Verlauf als die nach der Bewertungsmethodik genutzte Einzugsgebietsgrenze nach der Gewässerstationierungskarte auf. Ein Gebiet mit einem oberirdischen Einzugsgebiet vom ca. 135 ha (\(A_{E,k}\)=110 ha, \(A_{red}\)=60 ha) nördlich des Hauptbahnhofes in Dinslaken entwässert gemäß des GEP nicht in den Rotbach. Bei einer Reduzierung der aus den ATKIS-Verschneidungen ermittelten Flächen um dieses Gebiet ergeben sich die in Tabelle 4.7 angegeben Werte.

Tabelle 4.7: Flächenbilanz (Abschnitt 2774-001) unter Berücksichtigung der Angaben aus dem GEP

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Bewertungsmethodik</th>
<th>Nachweis</th>
<th>Abweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{E,k})</td>
<td>ha</td>
<td>579,5</td>
<td>452,3</td>
</tr>
<tr>
<td>(A_{red,gesamt,Teileinzugsgebiet})</td>
<td>ha</td>
<td>287,7</td>
<td>191,6</td>
</tr>
<tr>
<td>mittlerer Befestigungsgrad</td>
<td>[-]</td>
<td>0,50</td>
<td>0,42</td>
</tr>
<tr>
<td>(A_{red,Einleitung,Teileinzugsgebiet})</td>
<td>ha</td>
<td>117,0</td>
<td>112,6</td>
</tr>
<tr>
<td>(A_{red,TS,Teileinzugsgebiet})</td>
<td>ha</td>
<td>170,7</td>
<td>79,0</td>
</tr>
<tr>
<td>(A_{U,gesamt,Teileinzugsgebiet})</td>
<td>ha</td>
<td>244,5</td>
<td>191,6</td>
</tr>
<tr>
<td>(A_{U,Einleitung,Teileinzugsgebiet})</td>
<td>ha</td>
<td>99,5</td>
<td>112,6</td>
</tr>
<tr>
<td>(A_{U,TS,Teileinzugsgebiet})</td>
<td>ha</td>
<td>145,1</td>
<td>79,0</td>
</tr>
</tbody>
</table>

1) nach Bewertungsmethodik mit Korrektur der Einzugsgebietsgrenze
2) vereinfachter Nachweis BWK-M 3 von der Durchschlag & Bever Ing.ges. mbH
3) inkl. \(A_{u}\) des RKB Kirchstraße und des RRB Am Fichtenberg
Werden zusätzlich die baulich geprägten Flächen mit einem Befestigungsgrad von 0,34 anstatt 0,45 berücksichtigt (siehe Abschnitt 3.1.1), ergeben sich die Flächen in Tabelle 4.8.

Tabelle 4.8: Flächenbilanz (Abschnitt 2774-001) mit veränderten Befestigungsgrad

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Bewertungsmethode 1)</th>
<th>Nachweis 2)</th>
<th>Abweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{E,k}$</td>
<td>ha</td>
<td>579,5</td>
<td>452,3</td>
</tr>
<tr>
<td>$A_{red,gesamt,Teileinzugsgebiet}$</td>
<td>ha</td>
<td>232,3</td>
<td>191,6</td>
</tr>
<tr>
<td>mittlerer Befestigungsgrad [-]</td>
<td>0,40</td>
<td>0,42</td>
<td>-5,4</td>
</tr>
<tr>
<td>$A_{red,Einleitung,Teileinzugsgebiet}$</td>
<td>ha</td>
<td>117,0</td>
<td>112,6</td>
</tr>
<tr>
<td>$A_{red,TS,Teileinzugsgebiet}$</td>
<td>ha</td>
<td>115,3</td>
<td>79,0</td>
</tr>
<tr>
<td>$A_{U,gesamt,Teileinzugsgebiet}$</td>
<td>ha</td>
<td>197,5</td>
<td>191,6</td>
</tr>
<tr>
<td>$A_{U,Einleitung,Teileinzugsgebiet}$</td>
<td>ha</td>
<td>99,5</td>
<td>112,6</td>
</tr>
<tr>
<td>$A_{U,TS,Teileinzugsgebiet}$</td>
<td>ha</td>
<td>98,0</td>
<td>79,0</td>
</tr>
</tbody>
</table>

1) nach Bewertungsmethode mit Korrektur der Einzugsgebietsgrenze und verändertem Befestigungsgrad für baulich geprägte Flächen von 0,34
2) vereinfachter Nachweis BWK-M 3 von der Durchschlag & Bever Ing.ges. mbH
3) inkl. A_{red} des RKB Kirchstraße und des RRB Am Fichtenberg

Die Abweichungen der ermittelten Trenngebiete- und Straßenflächen ($A_{U,TS,Teileinzugsgebiet}$) von den Angaben aus dem Nachweis sind im Gegensatz zur Ausgangssituation deutlich geringer. Die Ergebnisse für dieses Beispielgebiet deuten somit darauf hin, dass ein geringerer Befestigungsgrad in der Bewertungsmethode vorgesehen werden sollte, als derzeit vorgesehen ist. Die Ergebnisse der ATKIS-Verschneidungen unter Berücksichtigung der geringeren Fläche im Teileinzugsgebiet zum Gewässerabschnitt 2774-001 und eines Befestigungsgrades von 0,34 für die baulich geprägten Flächen sind in der Anlage 4.2 zusammengestellt.

Der einjährliche Einleitungsabfluss von den Trenngebiete- und Straßenflächen ohne Behandlungsanlage errechnet sich gemäß der Bewertungsmethode aus dem Produkt der undurchlässigen Fläche und der 15-minütigen Regenspende ($r_{15,1}$). Dem vereinfachten Nachweis kann für den Gewässerabschnitt 2774-001 ein einjährlicher Einleitungsabfluss von 5.972 l/s bei einer Fläche von $A_{red,TS,Teileinzugsgebiet}$=79,0 ha entnommen werden. Beim Ansatz der Fläche aus dem vereinfachten Nachweis von 79,0 ha würde sich nach der Bewertungsmethode ein Abfluss von $Q_E=105,5$ l/(s·ha)-79,0 ha-0,85=7.084 l/s ergeben. Die Abweichung beträgt 18,6 %. Diese Abweichung ist darauf zurückzuführen, dass die angesetzten Einleitungsabflüsse im vereinfachten Nachweis aus einer detaillierten Kanalnetzberechnung stammen und bei der hier verwendeten Bewertungsmethode nur eine stark vereinfachte Berechnung vorgenommen werden kann.

4.1.7 Ermittlung geschlossener Siedlungsgebiete

Zur Festlegung welche Einleitungen die einzelnen Gewässerabschnitte belasten, müssen geschlossenen Siedlungsgebiete abgegrenzt werden.
Bei der Anwendung der Bewertungsmethodik zur Abgrenzung der geschlossenen Siedlungsgebiete ergibt sich aufgrund des Abgrenzungskriteriums (Abstand zwischen zwei Einleitungsstellen > 3,2 km) nur ein geschlossenes Siedlungsgebiet. Dieses umfasst den gesamten Rotbach und sämtliche Nebengewässer, d.h. sämtlich oberhalb des Abschnittes 2774-001 liegenden Einleitungsstellen belasten auch den Abschnitt 2774-001.

Im vorliegenden vereinfachten Nachweis werden dagegen nur sämtliche Einleitungen im Abschnitt 2774-001 zu einem geschlossenen Siedlungsgebiet zusammengefasst. Weiter oberhalb liegende Einleitungen werden nicht berücksichtigt. Ob sich oberhalb weitere Einleitungsstellen in den Rotbach befinden, kann den vorliegenden Daten nicht entnommen werden.

4.1.8 Ermittlung der hydraulischen Belastung

Jeder Gewässerabschnitt ist durch alle am betrachteten Gewässerabschnitt liegenden Einleitungen, sowie durch alle oberhalb liegenden Einleitungsstellen desselben geschlossenen Siedlungsgebietes belastet. Durch Summation aller Einleitungsabflüsse wird der vorhandene einjährige Einleitungsabfluss \(\text{QE}_{1,\text{vorh}} \) ermittelt.

Zur Berechnung des zulässigen Einleitungsabflusses ist es zunächst erforderlich, die potentiell natürliche einjährige Hochwasserabflusspende \(\text{Hq}_{1,\text{p nat}} \) aus den Hüllkurven gemäß BWK-M 3 zu ermitteln. Als Mittelwert aus den Hüllkurven ergibt sich für den Gewässerabschnitt 2774-001 ein \(\text{Hq}_{1,\text{p nat}} \) von 117 l/(s·km²). Beim vereinfachten Nachweis wird ein Wert von 74 l/(s·km²) angesetzt, der nach Angabe vom StuA Duisburg einem N-A-Modell entstammt (STUA DUISBURG, 2005).

Der zulässige Einleitungsabfluss \(\text{QE}_{1,\text{zul}} \) wird wie folgt berechnet:

\[
\text{QE}_{1,\text{zul}} \leq 1,0 \cdot \text{Hq}_{1,\text{p nat}} \cdot \frac{A_{\text{red. Nachweis}}}{100} + x \cdot \text{Hq}_{1,\text{p nat}} \cdot A_{E0} \text{ [l/s]}
\]

Aus dem Vorgehen gemäß der Bewertungsmethodik ergibt sich für den zulässigen Einleitungsabfluss ein Wert von...
Im vorliegenden vereinfachten Nachweis wird ein Multiplikationsfaktor \(x = 0,25 \) angesetzt. Dieser wurde ebenfalls mit Hilfe eines N-A-Modells bestimmt. Der zulässige Einleitungsabfluss aus dem vereinfachten Nachweis ergibt sich zu:

\[
Q_{E1,zul} \leq 10 \cdot \frac{506,7}{100} + 0,1 \cdot 117 \cdot 51,6 = 1.198 \quad [\text{l/s}] \quad \text{mit} \ x = 0,1
\]

Der nach der Bewertungsmethodik berechnete und der aus dem vereinfachten Nachweis entnommene zulässige Einleitungsabfluss weichen nur geringfügig voneinander ab. Jedoch ist zu beachten, dass die zur Berechnung genutzten Parameter \(A_{\text{red,Nachweis}} \), \(x \), \(H_{q1,\text{pmax}} \) und \(A_{E0} \) teilweise deutlich voneinander abweichen.

Die hydraulische Belastung der einzelnen Gewässerabschnitte ergibt sich aus dem Quotienten

\[
hyb_{\text{Gewässerabschnitt}} = \frac{Q_{E1,vorh}}{Q_{E1,zul}}
\]

Die Ergebnisse für die einzelnen Gewässerabschnitte sind in der Anlage 4.3 aufgeführt.

Für den Gewässerabschnitt 2774-001 ergibt sich nach der Bewertungsmethodik ein Wert für die hydraulische Belastung von 37,8. Aus dem vereinfachten Nachweis wird ein Wert von 13,4 ermittelt werden. Mit der Bewertungsmethodik wird ein fast dreimal höherer Wert für die hydraulische Belastung errechnet. Ursachen für diese Abweichungen sind:

- Überschätzung der Einleitungsabflüsse aus den REBEKA-Bauwerken (siehe Tabelle 4.4)
- Überschätzung des Einleitungsabflusses von den Trenngebiet- und Straßenflächen ohne Behandlung (siehe Abschnitt 4.1.6)
- Abweichende Einzugsgebietsgrenzen der Teileinzugsgebiete nach der GSK (siehe Abschnitt 4.1.6)
- Überschätzung der Trenngebiete- und Straßenflächen ohne Behandlungsanlage (siehe Tabelle 4.6)
- Abgrenzung von nur einem geschlossenen Siedlungsgebiet für den gesamten Rotbach (siehe Abschnitt 4.1.7.)

Die genannten Punkte führen in diesem speziellen Beispiel alle zu einer Erhöhung des vorhandenen Einleitungsabflusses (\(Q_{E1,vorh} \)) im Gegensatz zum vereinfachten Nachweis. Würde eine Korrektur der Gesamtfläche und eine Berechnung mit einem Befestigungsgrad für baulich geprägte Flächen von 0,34 (siehe Tabelle 4.8) erfolgen, sowie eine geänderte Abgrenzung der geschlossenen Siedlungsgebiete nach Abschnitt 4.1.7 durchgeführt werden, ergäbe sich beispielsweise eine verringerte hydraulische Belastung von 24,6 (siehe Anlage 4.3).
4.1.9 Ergebnisdarstellung und Aggregation zu Wasserkörpern nach der WRRL

Bild 4.2 Ergebnisse nach der Bewertungsmethodik
Bild 4.3 Ergebnisse aus dem vereinfachten Nachweis für den Abschnitt 2774-001

Bild 4.4 Ergebnisse nach Korrektur und Ergänzung der Methodik nach Anlage 4.3
Im Testgebiet befinden sich mehrere Wasserkörper nach der WRRL. Der Schwarze Bach unterteilt sich ebenso wie der Rotbach in jeweils drei Wasserkörper. Für die Wasserkörper ergeben sich nach der Methodik die Ergebnisse nach Bild 4.5. Dabei wird eine Korrektur und Ergänzung der Methodik nicht berücksichtigt.

Bild 4.5 Ergebnisse für die Oberflächenwasserkörper nach der Bewertungsmethode

4.1.10 Schlussfolgerungen für die Bewertungsmethode
Auf die Bewertungsmethode bezogen ergeben sich aus dem Testgebiet Rotbach folgende Schlussfolgerungen:
- In den REBEKA-Daten kommt es bei den Eingangsdaten zu geringen Abweichungen zu den verwendeten Daten im vereinfachten Nachweis (Flächenangaben, Drosselabflüsse). Dies wird möglicherweise auf einen nicht aktuellen Datenbestand zurückgeführt.
- Stimmen die REBEKA-Daten mit den Angaben des vereinfachten Nachweises überein, so kommt es trotzdem zu Abweichungen in den Einleitungsabflüssen, die bei der Bewertungsmethode nur mit einem vereinfachten Ansatz berechnet werden können. Insgesamt sind die Abweichungen aber gering.
- Die Überschätzung der Trenngebiete- und Straßenflächen bei den ATKIS-Verschneidungen deuten darauf hin, dass ein geringerer Befestigungsgrad angesetzt
werden sollte, als derzeit in der Methodik vorgesehen ist. Eine Überprüfung der Bewertungsmethodik in diesem Punkt erfolgt in der Phase II des Vorhabens.

4.2 Beispielgebiet Eschbach

Der Eschbach entwässert ein rund 32,5 km² großes Einzugsgebiet und liegt südlich von Remscheid und nördlich von Wermelskirchen. Der Eschbach mündet nach einer Fließlänge von etwa 12 km in die Wupper. Das mittlere Gefälle liegt bei etwa 1,5 %. Die zahlreichen Nebengewässer, an denen ein Großteil der Einleitungspunkte liegt, weisen ein großes Gefälle auf und münden teilweise verrohrt in den Eschbach. Der Eschbach weist mehrere zum Teil im Hauptschluss liegende ehemalige Hammerteiche auf. Weniger als 2 km unterstrom der Quelle fließt der Eschbach in die Eschbachtalsperre, welche ausschließlich zur Gewinnung von Trinkwasser genutzt wird. Etwa 2,5 km vor der Mündung in die Wupper fließt der Lohbach mit einem oberirdischen Einzugsgebiet von etwa 8 km² dem Eschbach zu.

Bild 4.6 Lageplan des Eschbachs mit Teileinzugsgebietsgrenzen der Gewässerabschnitte

Annahmen zur Ermittlung des vereinfachten Nachweises BWK-M3 Ist-Zustand

Dazu werden insbesondere die Daten zu den Bauwerken (\(A_u, Q_{E1}\)) und die Angaben zur einjährlichen Hochwasserabflussspende (\(Hq_{1,pnat}\)) aus dem vereinfachten Nachweis entnommen (IBBECK 2001b, 2001c). Bei der Bearbeitung stellten sich Unplausibilitäten bei den Flächenangaben heraus.

Aus zusätzlich vom Wupperverband zur Verfügung gestellten korrigierten Flächendaten (IBBECK, 2006) geht hervor, dass im Eschbacheinzugsgebiet bis zur Einmündung des Lohbaches eine undurchlässige Fläche (\(A_{u,gesamt}\)) von ca. 240 ha vorhanden ist. Dem vereinfachten Nachweis (IBBECK 2001b, 2001c) kann entnommen werden, dass insgesamt ca. 120 ha an Bauwerke (\(A_{u,Einleitung}\)) angeschlossen sind. Im Zuge dieses Vorhabens wird die Flächendifferenz von ca. 120 ha als Trenngebiet- und Straßenflächen ohne Behandlungsanlagen angenommen (\(A_{u,TS}\)). Weiterhin wird angenommen, dass der Abfluss von diesen Flächen direkt ins Gewässer gelangt. Für die Berechnung des einjährige Einleitungsabfluss wird die Annahme \(Q_{E1}=r_{15,1}\cdot A_u\) genutzt.

Für die Nebengewässer nach Tabelle 4.3 stehen damit detaillierte Flächenangaben zur Verfügung, so dass für diese Gewässer ein vereinfachter Nachweis nach BWK-M 3 erstellt werden kann. Nebengewässer, für die keine detaillierten Angaben zur Verfügung stehen, werden nicht bewertet. Insgesamt kann eine Trenngebieteinheit (\(A_{u,TS}\)) von 77,5 ha den Nebengewässern zugeordnet werden. In Tabelle 4.9 ist die Bilanzierung zusammengestellt.
Tabelle 4.9: Flächenbilanzen aus den Angaben zum vereinfachten Nachweis und Flächendaten vom Wupperverband

<table>
<thead>
<tr>
<th>Gewässer</th>
<th>GKZ</th>
<th>Bauwerk / Einleitungen</th>
<th>A_u (gesamt) 1 [ha]</th>
<th>A_u (Einleitungen) 2 [ha]</th>
<th>A_u (TS) [ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebengewässer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenter Bach</td>
<td>27367214</td>
<td>RRB Tenter Weg</td>
<td>12,6</td>
<td>10,4</td>
<td>2,2</td>
</tr>
<tr>
<td>Böker Bach</td>
<td>273672142</td>
<td></td>
<td>6,9</td>
<td>0,0</td>
<td>6,9</td>
</tr>
<tr>
<td>Baisiepen</td>
<td>273672144</td>
<td>RRB Struck, RUB Baisiepen</td>
<td>16,4</td>
<td>14,6</td>
<td>1,8</td>
</tr>
<tr>
<td>Lülfinghauser Bach</td>
<td>273672152</td>
<td></td>
<td>36,4</td>
<td>36,4</td>
<td></td>
</tr>
<tr>
<td>Berghausener Bach</td>
<td>2736721532</td>
<td>RUB Berghausen</td>
<td>16,1</td>
<td>7,9</td>
<td>8,2</td>
</tr>
<tr>
<td>Höllenbach</td>
<td>273672154</td>
<td>RUB Höllenbachtal, RUB Hagener Berg, RUB Hagenerstraße</td>
<td>15,7</td>
<td>15,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Stöckenberger Bach</td>
<td>273672192</td>
<td>RUB Ziegelstraße</td>
<td>15,7</td>
<td>12,2</td>
<td>3,5</td>
</tr>
<tr>
<td>Heintjesmühlenbach</td>
<td>27367218</td>
<td>RÜ Amselweg, RÜ Heintjesmühlenbachtal, RUB Am Buchenhang, RÜ Vorm Eicker Berg</td>
<td>39,5</td>
<td>21,4</td>
<td>18,1</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td>159,3</td>
<td>81,8</td>
<td>77,5</td>
</tr>
<tr>
<td>Eschbach 3</td>
<td>273672</td>
<td>RRB Falkenberg, RUB Eschbachtal, RUB Preyersmühle, RUB Am Ueling</td>
<td>84,7</td>
<td>39,3</td>
<td>45,4</td>
</tr>
<tr>
<td>Einzugsgebiet Eschbach 3</td>
<td></td>
<td></td>
<td>Summe</td>
<td>244,0</td>
<td>121,1</td>
</tr>
</tbody>
</table>

1 nach den Angaben von IBBECK 2006 für die Gewässer
2 nach den Angaben von IBBECK 2003 für die Bauwerke
3 A_u (gesamt) und A_u (TS) hier inklusive der Flächenanteile nicht berücksichtigter Nebengewässer
4 oberird. Einzugsgebiet des Eschbaches von Quelle bis Einmündung Lohbach

Aus den vorliegenden Daten ist nicht ersichtlich, wo im Einzugsgebiet sich die verbleibende Trenngebiete (A_u,TS) von 45,4 ha befindet. Daher wird dieses im Rahmen des Vorhabens vereinfacht gleichmäßig in Abhängigkeit der Abschnittslänge auf die Teilgebiete zu den Abschnitten 273672-003 bis 273672-014 des Eschbaches aufgeteilt (Abschnittsbezeichnung siehe Anlage 4.4), um diese Fläche als Belastung für die Nachweisführung am Eschbach zu berücksichtigen.

Tabelle 4.10: Aufteilung der Trenngebiete auf die Gewässerabschnitte des Eschbaches

<table>
<thead>
<tr>
<th>Abschnittslänge [m]</th>
<th>A_u (TS) [ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>273672-003</td>
<td>1042</td>
</tr>
<tr>
<td>273672-004</td>
<td>1481</td>
</tr>
<tr>
<td>273672-005</td>
<td>1170</td>
</tr>
<tr>
<td>273672-006</td>
<td>1007</td>
</tr>
<tr>
<td>273672-007</td>
<td>58</td>
</tr>
<tr>
<td>273672-008</td>
<td>1051</td>
</tr>
<tr>
<td>273672-009</td>
<td>494</td>
</tr>
<tr>
<td>273672-010</td>
<td>489</td>
</tr>
<tr>
<td>273672-011</td>
<td>897</td>
</tr>
<tr>
<td>273672-012</td>
<td>468</td>
</tr>
<tr>
<td>273672-013</td>
<td>383</td>
</tr>
<tr>
<td>273672-014</td>
<td>940</td>
</tr>
<tr>
<td>Summe:</td>
<td>9480</td>
</tr>
</tbody>
</table>

Im vorliegenden vereinfachten Nachweis (IBBECK 2001b, 2001c) werden Siedlungsabflüsse erst unterhalb der Eschbachtalsperre angesetzt. Da aus dem vereinfachten Nachweis keine oberirdischen Einzugsgebiete für die einzelnen Nebengewässer entnommen werden können,
werden zur Ermittlung des Ist-Zustandes die Teileinzugsgebietsgrenzen, die für dieses Vorhaben generiert werden, genutzt.

Fazit:

4.2.1 Gewässerabschnitte und Teileinzugsgebiete
Die Unterteilung der nach der GSK stationierten Fließgewässer in Gewässerabschnitte, sowie die Generierung der Teileinzugsgebiete erfolgt für das Testgebiet automatisiert mit dem für dieses Vorhaben von der FH Münster entwickeltem Makro. Die einzelnen Abschnitte mit den entsprechenden Bezeichnungen sind in der Anlage 4.4 dargestellt.

4.2.2 Zuordnung von Regenspenden
Aus dem KOSTRA-Atlas liegt für Remscheid für die 15-minütige Regenspende mit der Häufigkeit T=1 a ein Wert von 113,9 l/(s·ha) und für Wermelskirchen von 119,4 l/(s·ha) vor. Für das Testgebiet wird daher der Mittelwert von 116,7 l/(s·ha) gewählt. Die 10-minütige Regenspende wird durch Multiplikation mit dem Zeitbeiwert berechnet.

4.2.3 Aufbereitung der REBEKA-Daten
Im REBEKA-Kataster sind alle Bauwerke, die auch im vereinfachten Nachweis als bestehende Bauwerke aufgeführt sind, erfasst (siehe grüne Dreiecke in Bild 4.6). In Tabelle 4.11 sind die relevanten Daten zusammengefasst.
Tabelle 4.11: Aufbereitete REBEKA-Daten

<table>
<thead>
<tr>
<th>Bauwerk 1)</th>
<th>(A_{\text{red}}) 2)</th>
<th>(Q_t) 1)</th>
<th>(t_f)</th>
<th>Art 1)</th>
<th>(Q_{d,ab}) 1)</th>
<th>System 1)</th>
<th>Gefälle 1)</th>
<th>(r_{D,1}) 1)</th>
<th>(\Sigma Q_{d,zu,i})</th>
<th>(Q_{E1}) 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Falkenberg</td>
<td>4,0 FB</td>
<td>869,0</td>
<td>4,98</td>
<td>116,7</td>
<td>0,0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRB Falkenberg</td>
<td>38,0 FB</td>
<td>65,0 T</td>
<td>4,98</td>
<td>116,7</td>
<td>0,0</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Am Ueling</td>
<td>8,0 FB</td>
<td>8,0</td>
<td>0,92</td>
<td>116,7</td>
<td>0,0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Am Ueling</td>
<td>0,0 M</td>
<td>75,0</td>
<td>0,92</td>
<td>116,7</td>
<td>0,0</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Baisiepen</td>
<td>3,0 FB</td>
<td>-</td>
<td>5,88</td>
<td>147,3</td>
<td>0,0</td>
<td>376</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Berghausen</td>
<td>26,0 FB</td>
<td>30,0</td>
<td>7,45</td>
<td>147,3</td>
<td>0,0</td>
<td>3226</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Eschbachtal</td>
<td>0,0 DB</td>
<td>869,0</td>
<td>1,49</td>
<td>116,7</td>
<td>899,0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Heintjesmühle</td>
<td>35,0 FB</td>
<td>80,0</td>
<td>5,83</td>
<td>147,3</td>
<td>823,0</td>
<td>5126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Hoellenbachtal</td>
<td>12,0 FB</td>
<td>45,0</td>
<td>6,48</td>
<td>147,3</td>
<td>494,0</td>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Preyersmühle</td>
<td>9,0 FB</td>
<td>-</td>
<td>1,40</td>
<td>147,3</td>
<td>0,0</td>
<td>1127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Struck/Baisiepen</td>
<td>24,0 DB</td>
<td>-</td>
<td>5,88</td>
<td>147,3</td>
<td>0,0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Struck/Baisiepen</td>
<td>0,0 M</td>
<td>128,0</td>
<td>5,88</td>
<td>116,7</td>
<td>0,0</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Tenter Weg</td>
<td>22,0 FB</td>
<td>869,0</td>
<td>2,93</td>
<td>147,3</td>
<td>0,0</td>
<td>1886</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Tenter Weg</td>
<td>22,0 FB</td>
<td>70,0 M</td>
<td>2,93</td>
<td>116,7</td>
<td>0,0</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Ziegelstr./Arnoldstr.</td>
<td>12,0 FB</td>
<td>-</td>
<td>6,05</td>
<td>147,3</td>
<td>0,0</td>
<td>1503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Am Buchenhang</td>
<td>4,0 2,0 4,0</td>
<td>266,0</td>
<td>5,83</td>
<td>147,3</td>
<td>0,0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUB Am Buchenhang</td>
<td>3,0 4,0 M</td>
<td>40,0</td>
<td>5,83</td>
<td>116,7</td>
<td>0,0</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU Amselweg</td>
<td>4,0 3,0 3,0</td>
<td>284,0</td>
<td>5,83</td>
<td>147,3</td>
<td>0,0</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU Hagenber Berg</td>
<td>5,0 4,0 3,0</td>
<td>208,0</td>
<td>6,48</td>
<td>147,3</td>
<td>0,0</td>
<td>422</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU Hagenstraße</td>
<td>7,0 3,0 3,0</td>
<td>286,0</td>
<td>6,48</td>
<td>147,3</td>
<td>0,0</td>
<td>594</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU Vorm Eicker Berg</td>
<td>8,0 3,0 4,0</td>
<td>273,0</td>
<td>5,83</td>
<td>147,3</td>
<td>0,0</td>
<td>729</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Angaben aus dem REBEKA-Kataster
2) Ist in den REBEKA Daten verzeichnet, dass das Regenbecken (RB) in Einheit mit einem RRB betrieben wird, dann: \(A_{\text{red,RRB,angenommen}} = A_{\text{red,RRB,REBEKA}} \). Ansonsten wird der Wert aus den REBEKA Daten angesetzt
3) \(Q_{E1} = A_{\text{red}} \cdot \psi_S \cdot r_{D,1} + \sum Q_{d,zu,i} + Q_t - Q_{d,ab} \) mit \(\psi_S = 0,85 \)

Tabelle 4.12: Vergleich der Drosselabflüsse

<table>
<thead>
<tr>
<th></th>
<th>REBEKA $Q_{d,ab}$ [l/s]</th>
<th>Nachweis $Q_{d,ab}$ [l/s]</th>
<th>Abweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Falkenberg</td>
<td>869,0</td>
<td>10,0</td>
<td>8590,0</td>
</tr>
<tr>
<td>RRB Falkenberg</td>
<td>65,0</td>
<td>65,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜB Am Ueling</td>
<td>8,0</td>
<td>20,0</td>
<td>-60,0</td>
</tr>
<tr>
<td>RRB Am Ueling</td>
<td>75,0</td>
<td>85,0</td>
<td>-11,8</td>
</tr>
<tr>
<td>RÜB Baisiepen (Grüental)</td>
<td>-</td>
<td>20,0</td>
<td></td>
</tr>
<tr>
<td>RÜB Berghausen</td>
<td>30,0</td>
<td>20,0</td>
<td>50,0</td>
</tr>
<tr>
<td>RÜB Eschbachtal</td>
<td>869,0</td>
<td>105,0</td>
<td>727,6</td>
</tr>
<tr>
<td>RÜB Heintjesmühle</td>
<td>80,0</td>
<td>80,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜB Hoellenbachtal</td>
<td>45,0</td>
<td>45,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜB Ppyersmühle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RÜB Struck/Baisiepen</td>
<td>128,0</td>
<td>115,0</td>
<td>11,3</td>
</tr>
<tr>
<td>RÜB Tenter Weg</td>
<td>869,0</td>
<td>35,0</td>
<td>2382,9</td>
</tr>
<tr>
<td>RÜB Tenter Weg</td>
<td>70,0</td>
<td>70,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜB Ziegelstr./Arnoldstr.</td>
<td>-</td>
<td>35,0</td>
<td></td>
</tr>
<tr>
<td>RÜ Am Buchenhang</td>
<td>266,0</td>
<td>266,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RRR Am Buchenhang</td>
<td>40,0</td>
<td>40,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜ Amselweg</td>
<td>284,0</td>
<td>284,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜ Hagenberg</td>
<td>208,0</td>
<td>208,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜ Hagenstraße</td>
<td>286,0</td>
<td>286,0</td>
<td>0,0</td>
</tr>
<tr>
<td>RÜ Vorm Eicker Berg</td>
<td>273,0</td>
<td>273,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

1) vereinfachter Nachweis BWK-M 3 vom Ingenieurbüro Reinhard Beck

In Tabelle 4.13 sind die Angaben zu den angeschlossenen Flächen aus den REBEKA-Daten und aus dem vereinfachten Nachweis gegenübergestellt. Auch hier zeigen sich deutliche Abweichungen, die in der Summe zu einem Fehler von fast 73 % führen. Ursache für diese Abweichung ist in einigen Fällen eine doppelte Flächenangabe bei Regenbecken, die in Einheit mit einem RRB betrieben werden. Durch die Bewertungsmethodik lassen sich diese Fehliahnagen derzeit nur teilweise korrigieren. So ist z.B. sowohl beim RÜB, als auch beim RRB Am Ueling jeweils eine angeschlossene Fläche A_{red} von 8,0 ha verzeichnet. Diese Doppelung wird in der Methodik dadurch korrigiert, dass die beim RRB angegebene Fläche je- weils durch die am Regenbecken angegebene Fläche reduziert wird. Wie diese Doppelungen bei der flächenhaften Umsetzung in NRW erkannt werden können, muss in der Projektphase II geprüft werden, wenn die Struktur und der Inhalt der dann zugrunde zu legenden neuen REBEKA-Daten (REBEKA 10) bekannt ist. Beim SK Falkenberg und beim RÜB Tenter Weg fehlt die Angabe, dass die Becken in Einheit mit einem RRB betrieben werden, so dass hier die Flächenkorrektur nicht durchgeführt wird.

Insgesamt treten bei den Bauwerken teilweise deutliche Abweichungen zwischen den Flä- chenangaben im REBEKA-Kataster und den Angaben aus dem vereinfachten Nachweis auf, was darauf hindeutet, dass die REBEKA-Daten in diesem Gebiet nicht auf dem aktuellsten Stand sind. Des Weiteren ist in den REBEKA-Daten fälschlicherweise aufgeführt, dass der Drosselabfluss vom RÜB Berghausen zum RÜB Eschbachtal weitergeleitet wird.
Tabelle 4.13: Vergleich der Flächenangaben

<table>
<thead>
<tr>
<th>REBEKA Bewertungsmethodik</th>
<th>FL</th>
<th>Nachweis</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{red} [\text{ha}]</td>
<td>A_{u} [\text{ha}]</td>
<td>A_{u} [\text{ha}]</td>
<td>[%]</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>SK Falkenberg</td>
<td>4,0</td>
<td>3,40</td>
<td>12,3</td>
</tr>
<tr>
<td>RRB Falkenberg</td>
<td>38,0</td>
<td>32,30</td>
<td>0,0</td>
</tr>
<tr>
<td>RUB Am Ueling</td>
<td>8,0</td>
<td>6,80</td>
<td>8,1</td>
</tr>
<tr>
<td>RRB Am Ueling</td>
<td>0,0</td>
<td>0,00</td>
<td>0,0</td>
</tr>
<tr>
<td>RUB Baisiepen</td>
<td>3,0</td>
<td>2,55</td>
<td>2,1</td>
</tr>
<tr>
<td>RUB Berghausen</td>
<td>26,0</td>
<td>22,10</td>
<td>7,9</td>
</tr>
<tr>
<td>RUB Eschbachtal</td>
<td>0,0</td>
<td>0,00</td>
<td>15,3</td>
</tr>
<tr>
<td>RUB Heintjesmühle</td>
<td>35,0</td>
<td>29,75</td>
<td>0,0</td>
</tr>
<tr>
<td>RUB Hoellenbachtal</td>
<td>12,0</td>
<td>10,20</td>
<td>3,3</td>
</tr>
<tr>
<td>RUB Preyersmühle</td>
<td>9,0</td>
<td>7,65</td>
<td>3,5</td>
</tr>
<tr>
<td>RUB Struck/Baisiepen</td>
<td>24,0</td>
<td>20,40</td>
<td>12,5</td>
</tr>
<tr>
<td>RRB Struck/Baisiepen</td>
<td>0,0</td>
<td>0,00</td>
<td>0,0</td>
</tr>
<tr>
<td>RUB Tenter Weg</td>
<td>22,0</td>
<td>18,70</td>
<td>10,4</td>
</tr>
<tr>
<td>RRB Tenter Weg</td>
<td>22,0</td>
<td>18,70</td>
<td>0,0</td>
</tr>
<tr>
<td>RUB Ziegelstr./Arnoldstr.</td>
<td>12,0</td>
<td>10,20</td>
<td>12,2</td>
</tr>
<tr>
<td>RU Am Buchenhang</td>
<td>4,0</td>
<td>3,40</td>
<td>9,0</td>
</tr>
<tr>
<td>RRB Am Buchenhang</td>
<td>3,0</td>
<td>2,55</td>
<td>0,0</td>
</tr>
<tr>
<td>RU Amselweg</td>
<td>4,0</td>
<td>3,40</td>
<td>4,3</td>
</tr>
<tr>
<td>RU Hagener Berg</td>
<td>5,0</td>
<td>4,25</td>
<td>4,9</td>
</tr>
<tr>
<td>RU Hagenstraße</td>
<td>7,0</td>
<td>5,95</td>
<td>7,1</td>
</tr>
<tr>
<td>RU Vorm Eicker Berg</td>
<td>8,0</td>
<td>6,80</td>
<td>8,1</td>
</tr>
<tr>
<td>Summe</td>
<td>246,00</td>
<td>209,10</td>
<td>121,1</td>
</tr>
</tbody>
</table>

1) \(A_{u} = A_{red} \cdot \psi_s\) mit \(\psi_s = 0,85\) nach Bewertungsmethodik
2) vereinfachter Nachweis BWK-M 3 vom Ingenieurbüro Reinhard Beck

Um zu ermitteln, wie groß die Abweichungen bei der Berechnung der Einleitungsabflüsse wäre, wenn bei der Anwendung der Bewertungsmethodik für dieses Beispielgebiet vollständig richtige REBEKA-Daten vorliegen würden, werden in Tabelle 4.15 die Einleitungsabflüsse mit korrigierten Daten (Drosselabflüsse, Flächenangaben, Verknüpfungen) ermittelt.

Es zeigen sich noch bei einzelnen Bauwerken größere Abweichungen. Dieses ist darauf zurückzuführen, dass die Einleitungsabflüsse im vereinfachten Nachweis aus einer detaillierten Kanalnetzberechnung stammen und nach der Bewertungsmethodik nur eine stark vereinfachte Berechnung durchgeführt werden kann. Insgesamt lassen die Abweichungen mit 8,3 % aber gering.

Tabelle 4.14: Vergleich der einjährlichen Einleitungsabflüsse

<table>
<thead>
<tr>
<th>Bewertungsmethodik QE1 1)</th>
<th>Nachweis 2) QE1</th>
<th>Abweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Falkenberg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Falkenberg</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>RUB Am Ueling</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Am Ueling</td>
<td>75</td>
<td>85</td>
</tr>
<tr>
<td>RUB Baisiepen (Grüental)</td>
<td>376</td>
<td>238</td>
</tr>
<tr>
<td>RUB Berghausen</td>
<td>3227</td>
<td>890</td>
</tr>
<tr>
<td>RUB Eschbachtal</td>
<td>30</td>
<td>1732</td>
</tr>
<tr>
<td>RUB Heintjesmühle</td>
<td>5128</td>
<td>1233</td>
</tr>
<tr>
<td>RUB Hoellenbachtal</td>
<td>1952</td>
<td>370</td>
</tr>
<tr>
<td>RUB Preyersmühle</td>
<td>1128</td>
<td>297</td>
</tr>
<tr>
<td>RUB Struck/Baisiepen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Struck/Baisiepen</td>
<td>128</td>
<td>115</td>
</tr>
<tr>
<td>RUB Tenter Weg</td>
<td>1887</td>
<td>0</td>
</tr>
<tr>
<td>RRB Tenter Weg</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>RUB Ziegelstr./Arnoldstr.</td>
<td>1503</td>
<td>1380</td>
</tr>
<tr>
<td>RU Am Buchenhangel</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Am Buchenhangel</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>RU Amselweg</td>
<td>220</td>
<td>487</td>
</tr>
<tr>
<td>RU Hagener Berg</td>
<td>422</td>
<td>490</td>
</tr>
<tr>
<td>RU Hagenstraße</td>
<td>594</td>
<td>798</td>
</tr>
<tr>
<td>RU Vorm Eicker Berg / Reitplatz</td>
<td>729</td>
<td>916</td>
</tr>
<tr>
<td>Summe</td>
<td>10853</td>
<td>4613</td>
</tr>
</tbody>
</table>

1) nach Bewertungsmethodik
2) vereinfachter Nachweis BWK-M 3 vom Ingenieurbüro Reinhard Beck
Tabelle 4.15: Vergleich der einjährlichen Einleitungsabflüssse nach Korrektur der REBEKA-Daten

<table>
<thead>
<tr>
<th>Bewertungsmethodik Q_{E1} 1</th>
<th>Nachweis 2 Q_{E1} 1</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Falkenberg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Falkenberg</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>RÜB Am Ueling</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Am Ueling</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>RÜB Baisiepen (Grüental)</td>
<td>308</td>
<td>238</td>
</tr>
<tr>
<td>RÜB Berghausen</td>
<td>1147</td>
<td>890</td>
</tr>
<tr>
<td>RÜB Eschbachtal</td>
<td>1718</td>
<td>1732</td>
</tr>
<tr>
<td>RÜB Heintjesmühle</td>
<td>743</td>
<td>1233</td>
</tr>
<tr>
<td>RÜB Hoellenbachtal</td>
<td>931</td>
<td>370</td>
</tr>
<tr>
<td>RÜB Preyersmühle</td>
<td>520</td>
<td>297</td>
</tr>
<tr>
<td>RÜB Struck/Baisiepen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Struck/Baisiepen</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>RÜB Tenter Weg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Tenter Weg</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>RÜB Ziegelstr./Arnoldstr.</td>
<td>1800</td>
<td>1380</td>
</tr>
<tr>
<td>RU Am Buchenhang</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRB Am Buchenhang</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>RU Amselewweg</td>
<td>356</td>
<td>487</td>
</tr>
<tr>
<td>RU Hagener Berg</td>
<td>520</td>
<td>490</td>
</tr>
<tr>
<td>RU Hagenstraße</td>
<td>759</td>
<td>798</td>
</tr>
<tr>
<td>RU Vorm Eicker Berg / Reitplatz</td>
<td>922</td>
<td>916</td>
</tr>
<tr>
<td>Summe</td>
<td>4998</td>
<td>4613</td>
</tr>
</tbody>
</table>

1 nach Bewertungsmethodik mit A_{hub}, Q_{d} und Bauwerksverknüpfungen aus vereinfachtem Nachweis

2 vereinfachter Nachweis BWK-M 3 vom Ingenieurbüro Reinhard Beck

Fazit:
Da die in Abschnitt 4.2.3 dargestellten Abweichungen überwiegend auf nicht korrekte Grundlagendaten zurückzuführen sind, kann ihnen durch die Methodik nicht begegnet werden. Ein möglichst fehlerfreier REBEKA-Datenbestand ist für die Anwendung der Methodik daher wünschenswert. Eine Korrektur der REBEKA-Daten kann, wie dieses Beispiel zeigt, notwendig sein. In der Ergebnisdarstellung der Bewertungsmethodik werden daher die Eingangsdaten auch für die Regenbecken mit ausgegeben, so dass diese zu Kontrollzwecken zugänglich sind.

4.2.4 Aufbereitung der NIKLAS-KOM Daten
Für den Eschbach sind in den NIKLAS-KOM Daten keine Einleiter verzeichnet.

4.2.5 Aufbereitung der NIKLAS-IGL Daten
Für den Eschbach sind in den NIKLAS-IGL Daten keine Einleiter verzeichnet.
4.2.6 Ermittlung der Trenngebiete- und Straßenflächen ohne Behandlungsanlagen und deren Einleitungsabflüsse

Zur Ermittlung der einleitungsrelevanten befestigten Flächen \(A_{\text{red,TS,Teileinzugsgebiet}}\), die zusätzlich zu den in den Katastern erfassten Flächen zu berücksichtigen sind, werden die ATKIS-Verschneidungen gemäß der Bewertungsmethodik durchgeführt. Tabelle 4.16 zeigt eine Übersicht über die ermittelten Flächen. Die Lage der einzelnen Abschnitte kann der Anlage 4.4 entnommen werden.

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>(A_{\text{red,TEZG,TS,Teileinzugsgebiet}}) [ha]</th>
<th>(A_{\text{red,TS,Teileinzugsgebiet}}) [ha]</th>
<th>(A_{\text{red,gesamt,TS,Teileinzugsgebiet}}) [ha]</th>
<th>(A_{\text{red,TS,Teileinzugsgebiet,abgem.}}) [ha]</th>
<th>Summe [ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>273672-003</td>
<td>48,2</td>
<td>4,8</td>
<td>2,5</td>
<td>0,0</td>
<td>2,5</td>
</tr>
<tr>
<td>273672-004</td>
<td>147,1</td>
<td>40,3</td>
<td>20,1</td>
<td>8,0</td>
<td>12,1</td>
</tr>
<tr>
<td>273672-005</td>
<td>100,2</td>
<td>27,2</td>
<td>13,4</td>
<td>0,0</td>
<td>13,4</td>
</tr>
<tr>
<td>273672-006</td>
<td>65,3</td>
<td>18,1</td>
<td>9,4</td>
<td>9,0</td>
<td>0,4</td>
</tr>
<tr>
<td>273672-007</td>
<td>1,6</td>
<td>0,4</td>
<td>0,3</td>
<td>0,0</td>
<td>0,3</td>
</tr>
<tr>
<td>273672-008</td>
<td>73,3</td>
<td>22,9</td>
<td>10,5</td>
<td>0,0</td>
<td>10,5</td>
</tr>
<tr>
<td>273672-009</td>
<td>17,9</td>
<td>3,5</td>
<td>2,0</td>
<td>0,0</td>
<td>2,0</td>
</tr>
<tr>
<td>273672-010</td>
<td>25,2</td>
<td>11,5</td>
<td>7,5</td>
<td>0,0</td>
<td>7,5</td>
</tr>
<tr>
<td>273672-011</td>
<td>64,0</td>
<td>1,1</td>
<td>0,6</td>
<td>0,0</td>
<td>0,6</td>
</tr>
<tr>
<td>273672-012</td>
<td>23,1</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>273672-013</td>
<td>11,0</td>
<td>1,0</td>
<td>0,4</td>
<td>0,0</td>
<td>0,4</td>
</tr>
<tr>
<td>273672-014</td>
<td>52,4</td>
<td>4,5</td>
<td>2,2</td>
<td>0,0</td>
<td>2,2</td>
</tr>
<tr>
<td>273672-015</td>
<td>20,7</td>
<td>0,7</td>
<td>0,4</td>
<td>0,0</td>
<td>0,4</td>
</tr>
<tr>
<td>273672-016</td>
<td>95,1</td>
<td>14,6</td>
<td>6,8</td>
<td>0,0</td>
<td>6,8</td>
</tr>
<tr>
<td>273672-017</td>
<td>51,0</td>
<td>0,6</td>
<td>0,3</td>
<td>0,0</td>
<td>0,3</td>
</tr>
<tr>
<td>273672-018</td>
<td>95,1</td>
<td>7,0</td>
<td>3,3</td>
<td>0,0</td>
<td>3,3</td>
</tr>
<tr>
<td>273672-019</td>
<td>54,9</td>
<td>0,8</td>
<td>0,4</td>
<td>0,0</td>
<td>0,4</td>
</tr>
<tr>
<td>273672-020</td>
<td>20,9</td>
<td>4,0</td>
<td>2,0</td>
<td>0,0</td>
<td>2,0</td>
</tr>
<tr>
<td>273672-021</td>
<td>29,8</td>
<td>2,9</td>
<td>1,5</td>
<td>0,0</td>
<td>1,5</td>
</tr>
<tr>
<td>273672-022</td>
<td>39,3</td>
<td>14,1</td>
<td>7,4</td>
<td>0,0</td>
<td>7,4</td>
</tr>
<tr>
<td>273672-023</td>
<td>56,4</td>
<td>13,5</td>
<td>6,8</td>
<td>44,0</td>
<td>0,0</td>
</tr>
<tr>
<td>273672-024</td>
<td>20,4</td>
<td>3,6</td>
<td>1,9</td>
<td>0,0</td>
<td>1,9</td>
</tr>
<tr>
<td>273672-025</td>
<td>26,0</td>
<td>11,1</td>
<td>5,7</td>
<td>0,0</td>
<td>5,7</td>
</tr>
<tr>
<td>273672-026</td>
<td>46,4</td>
<td>21,5</td>
<td>10,9</td>
<td>0,0</td>
<td>10,9</td>
</tr>
<tr>
<td>273672-027</td>
<td>23,9</td>
<td>8,4</td>
<td>4,4</td>
<td>0,0</td>
<td>4,4</td>
</tr>
<tr>
<td>273672-028</td>
<td>28,0</td>
<td>24,0</td>
<td>12,4</td>
<td>0,0</td>
<td>12,4</td>
</tr>
<tr>
<td>273672-029</td>
<td>26,4</td>
<td>18,4</td>
<td>9,2</td>
<td>0,0</td>
<td>9,2</td>
</tr>
<tr>
<td>273672-030</td>
<td>47,3</td>
<td>30,2</td>
<td>15,2</td>
<td>27,0</td>
<td>0,0</td>
</tr>
<tr>
<td>273672-031</td>
<td>149,9</td>
<td>59,1</td>
<td>30,7</td>
<td>0,0</td>
<td>30,7</td>
</tr>
<tr>
<td>273672-032</td>
<td>68,2</td>
<td>37,1</td>
<td>19,5</td>
<td>26,0</td>
<td>0,0</td>
</tr>
<tr>
<td>273672-033</td>
<td>112,2</td>
<td>48,2</td>
<td>24,3</td>
<td>24,0</td>
<td>0,3</td>
</tr>
<tr>
<td>273672-034</td>
<td>84,4</td>
<td>6,7</td>
<td>3,4</td>
<td>0,0</td>
<td>3,4</td>
</tr>
<tr>
<td>273672-035</td>
<td>9,2</td>
<td>6,6</td>
<td>3,7</td>
<td>0,0</td>
<td>3,7</td>
</tr>
<tr>
<td>273672-036</td>
<td>86,3</td>
<td>50,6</td>
<td>25,9</td>
<td>42,0</td>
<td>0,0</td>
</tr>
<tr>
<td>273672-037</td>
<td>33,4</td>
<td>5,2</td>
<td>2,7</td>
<td>0,0</td>
<td>2,7</td>
</tr>
<tr>
<td>273672-038</td>
<td>129,2</td>
<td>57,5</td>
<td>30,3</td>
<td>54,0</td>
<td>0,0</td>
</tr>
<tr>
<td>273672-039</td>
<td>79,2</td>
<td>11,5</td>
<td>5,9</td>
<td>0,0</td>
<td>5,9</td>
</tr>
<tr>
<td>273672-040</td>
<td>51,5</td>
<td>17,9</td>
<td>9,1</td>
<td>12,0</td>
<td>0,0</td>
</tr>
<tr>
<td>273672-041</td>
<td>22,1</td>
<td>17,3</td>
<td>9,0</td>
<td>0,0</td>
<td>9,0</td>
</tr>
<tr>
<td>273672-042</td>
<td>14,2</td>
<td>11,1</td>
<td>5,9</td>
<td>0,0</td>
<td>5,9</td>
</tr>
<tr>
<td>273672-043</td>
<td>119,0</td>
<td>28,9</td>
<td>14,8</td>
<td>0,0</td>
<td>14,8</td>
</tr>
<tr>
<td>Summe</td>
<td>2191,5</td>
<td>668,4</td>
<td>342,7</td>
<td>246,0</td>
<td>194,8</td>
</tr>
</tbody>
</table>

\(^{1)}\) TEZG=Teileinzugsgebiet

Würden bei den Beckenbauwerken die korrekten Einzugsgebietsflächen aus dem vereinfachten Nachweis angesetzt werden, ergäbe sich ein Abminderungsfaktor von nur 0,87. Die Ergebnisse mit den korrigierten Daten sind in der Anlage 4.5 aufgeführt.

Insgesamt ergibt sich für das Testgebiet nach Tabelle 4.16 eine befestigte Fläche von A-red,gesamt=342,7 ha und eine durchlässige Fläche von A-u,gesamt=0,85·342,7=291,3 ha. Im vorliegenden vereinfachten Nachweis wird A-u=A-red gesetzt. Den vom Wupperverband zur Verfügung gestellten Daten kann eine undurchlässige Gesamtfläche von 244,0 ha entnommen werden (IBBECK, 2006). Die undurchlässige Fläche wird also nach der Bewertungsmethodik überschätzt.

Würde bei der Methodik ein Befestigungsgrad von 0,34 statt 0,45 für die baulich geprägten Flächen (siehe Abschnitt 3.1.1) angesetzt werden, ergäbe sich nach der Bewertungsmethodik eine undurchlässige Fläche von A-u,gesamt=242,0 ha. Die Abweichung zur angegebenen Fläche wäre damit kleiner als 1%. Somit spricht auch das Beispielgebiet Eschbach für einen geringeren Befestigungsgrad für die Bewertungsmethodik. Eine Festlegung des Wertes erfolgt in der Projektphase II.

4.2.7 Ermittlung geschlossener Siedlungsgebiete

Zur Festlegung welche Einleitungen die einzelnen Gewässerabschnitte belasten, müssen geschlossenen Siedlungsgebiete abgegrenzt werden.

Im vorliegenden vereinfachten Nachweis (IBBECK 2001b, 2001c) wird der Eschbach in zwei geschlossene Siedlungsgebiete unterteilt. Das geschlossene Siedlungsgebiet Eschbach I erstreckt sich von der Quelle bis zur Einmündung des Aschenberger Baches, wobei jedoch oberhalb der Talsperre keine Einleitungen berücksichtigt werden (siehe Bild 4.6). Das ge-
schlossene Siedlungsgebiet Eschbach II beginnt beim RÜB Westhausen und ist Teil eines geschlossenen Siedlungsgebietes der Wupper. Der Lohbach stellt im vorliegenden vereinfachten Nachweis ein eigenständiges geschlossenes Siedlungsgebiet dar.

Nach der Bewertungsmethodik ergeben sich an den Endpunkten der Gewässerabschnitte 273672-002 bis 273672-004 fiktive Einleitungsstellen, so dass der Abstand zwischen zwei Einleitungsstellen immer <3,2 km ist und es zu keiner Abgrenzung eines geschlossenen Siedlungsgebietes kommt.

4.2.8 Ermittlung der hydraulischen Belastung

Jeder Gewässerabschnitt ist durch alle am betrachteten Gewässerabschnitt liegenden Einleitungen, sowie durch alle oberhalb liegenden Einleitungsstellen desselben geschlossenen Siedlungsgebietes belastet. Durch Summation aller Einleitungsabflüsse wird der vorhandene einjährige Einleitungsabfluss $Q_{E1,vorh}$ ermittelt.

Zur Berechnung des zulässigen Einleitungsabflusses ist es zunächst erforderlich, die potentiell natürliche einjährige Hochwasserabflussspende ($H_{q1, pnat}$) aus den Hüllkurven gemäß BWK-M 3 zu ermitteln. Als Mittelwert aus den Hüllkurven ergeben sich für die Nebengewässer Werte von etwa 400 l/(s·km²) und für den Eschbach je nach betrachtetem Streckenabschnitt ein Wert von 300 bis 400 l/(s·km²). Beim vereinfachten Nachweis wird für die Neben-
gewässer ein Wert von 370 l/(s·km²) und für den Eschbach oberhalb des Lohbaches von 250 l/(s·km²) angesetzt. Diese Werte entstammen aus dem Niederschlags-Abfluss-Modell Eschbach aus dem Jahre 1994 und wurden aus der Nullvariante (keine antrophogene Beeinflussung des Einzugsgebietes) für die zweijährliche Abflussspende berechnet (IBBECK, 2001b):

\[Hq_{1,\text{Null}} = 0.9 \cdot Hq_{2,\text{Null variante}} \]

Der zulässige Einleitungsabfluss \(Q_{E1,zul} \) wird wie folgt berechnet:

\[Q_{E1,zul}^{\text{Nachweis}} \leq 10 \cdot Hq_{1,\text{Null}} \cdot \frac{A_{\text{red Nachweis}}}{100} + x \cdot Hq_{1,\text{Null}} \cdot A_{E0} \quad [l/s] \]

Aus dem Vorgehen gemäß der Bewertungsmethodik ergibt sich für Eschbach bis zur Einmündung des Lohbaches ein zulässiger Einleitungsabfluss von

\[Q_{E1,zul}^{\text{Nachweis}} \leq 10 \cdot 300,4 \cdot \frac{325,4}{100} + 0,1 \cdot 300,4 \cdot 21,92 = 1.636 \quad [l/s] \]

Der zulässige Einleitungsabfluss aus dem vereinfachten Nachweis ergibt sich zu:

\[Q_{E1,zul}^{\text{Nachweis}} \leq 10 \cdot 250 \cdot \frac{235,4}{100} + 0,1 \cdot 250 \cdot 21,92 = 1.136 \quad [l/s] \]

Der nach der Bewertungsmethodik berechnete und der aus dem vereinfachten Nachweis entnommene zulässige Einleitungsabfluss weichen für den Eschbach an der Einleitungsstelle des Lohbaches um etwa 44% voneinander ab. Diese Abweichung ist im Wesentlichen darauf zurückzuführen, dass nach der Bewertungsmethodik ein \(A_{\text{red Nachweis}} \) von 325,4 statt 235,4 angesetzt wird. Die Ursachen dazu wurden bereits im Abschnitt 4.2.6 diskutiert. Weiterhin weicht der \(Hq_{1,\text{Null}} \) – Wert voneinander ab, was auf die unterschiedliche Ermittlung (Hüllkurve bzw. N-A-Modell) zurückzuführen ist.

Die hydraulische Belastung der einzelnen Gewässerabschnitte ergibt sich aus dem Quotienten \(\text{hydB}_{\text{Gewässerabschnitt}} = Q_{E1,vorh}/Q_{E1,zul} \). Die Ergebnisse für die einzelnen Gewässerabschnitte sind in Anlage 4.6 aufgeführt.

Für den untersten betrachteten Gewässerabschnitt des Eschbaches 273672-003 (siehe Anlage 4.4) ergibt sich beispielhaft nach der Bewertungsmethodik ein Wert für die hydraulische Belastung von 16,0. Unter den Annahmen aus Abschnitt 4.2 wird für den Ist-Zustand des vereinfachten Nachweises ein Wert von 19,8 ermittelt. Mit der Bewertungsmethodik wird also eine etwas niedrigere Belastung ermittelt. Dies ist auf den nach der Bewertungsmethodik ermittelten größeren zulässigen Einleitungsabfluss \(Q_{E1,zul} \) zurückzuführen. Für den vorhandenen Einleitungsabfluss \(Q_{E1,vorh} \) ergibt sich nach der Bewertungsmethodik ein größerer Wert (\(Q_{E1,vorh} = 26.241 \) l/s) als nach dem vereinfachten Nachweis (\(Q_{E1,vorh} = 22.537 \) l/s).
Insgesamt passt die hydraulische Bewertung der Niederschlagswassereinleitungen nach der Bewertungsmethodik und dem vereinfachten Nachweis für dieses Beispielgebiet gut überein.

4.2.9 Ergebnisdarstellung und Aggregation zu Wasserkörpern nach der WRRL
Der Eschbach wird durch die Talsperre in insgesamt drei Wasserkörper nach der WRRL unterteilt. Der erste Wasserkörper verläuft von der Quelle bis zur Talsperre, der zweite bis zum Ende der Talsperre und der dritte bis zur Mündung in die Wupper. In Bild 4.9 sind die Belastungen für die einzelnen Wasserkörper nach der Bewertungsmethodik dargestellt. Es ist jedoch zu beachten, dass für den dritten Wasserkörper angenommen wird, dass sich von der Einmündung des Lohbaches bis zur Mündung in die Wupper keine wesentliche Änderung der hydraulischen Belastung ergibt.
4.2.10 Schlussfolgerungen für die Bewertungsmethodik

Auf die Bewertungsmethodik bezogen ergeben sich aus dem Testgebiet Eschbach folgende Schlussfolgerungen:

- Das in der Bewertungsmethodik verwendete Abgrenzungskriterium muss in der Phase II geprüft und ggf. korrigiert werden, da beim Beispielgebiet Eschbach nach der Bewertungsmethodik das Ende des geschlossenen Siedlungsgebietes an der Einmündung des Lohbachs noch nicht erreicht ist, wie es bei dem vereinfachten Nachweis der Fall ist.
5 Zusammenfassung

Zur Umsetzung der EG-Wasserrahmenrichtlinie ist es erforderlich, die hydraulische Belastung von Fließgewässern durch Niederschlagswassereinleitungen im Rahmen einer Immisionsbetrachtung durchzuführen. Im Rahmen dieses Projektes wird unter Berücksichtigung der Datenverfügbarkeit und des automatisierten Vorgehens eine Bewertungsmethodik entwickelt, die eine GIS-gestützte Beurteilung dieser Belastung in NRW ermöglicht.

In der Literatur sind unterschiedliche Signifikanzkriterien für die Beurteilung der hydraulischen Belastung von Niederschlagswassereinleitungen dokumentiert. Da das Signifikanzkriterium des vereinfachten Nachweises des BWK-M 3 bei immissionsorientierten Nachweisen in NRW häufig angewendet wird, wird dieses Kriterium für die Bewertungsmethodik als Grundlage verwendet. Da kein Regionalisierungsverfahren auf der Ebene von NRW eine Ermittlung des potenziell naturnahen Hochwasserabflusses $HQ_{1,pnat}$ liefert, der für die Bewertung notwendig ist, werden dazu die Hüllkurvenwerte des BWK-M 3 verwendet.

Die Bewertungsmethodik wird iterativ entwickelt und auf zwei Testgebiete (Rotbach und Eschbach) angewendet, für die vereinfachte Nachweise nach BWK-M 3 als Referenz vorliegen. Beim Rotbach zeigen sich größere Abweichungen zwischen der Anwendung der Bewertungsmethodik und dem vereinfachten Nachweis, was im Wesentlichen auf fehlerhafte Eingangsdaten, einen zu hohen Befestigungsgrad und eine unterschiedliche Abgrenzung des geschlossenen Siedlungsgebietes zurückzuführen ist. Beim Eschbach passen die Ergebnisse recht gut überein.

Insgesamt zeigt sich, dass vor einer Übertragung der Bewertungsmethodik auf NRW ein Abgleich der Ergebnisse aus der GIS Anwendung mit örtlichen vereinfachten Nachweisen nach BWK-M 3 notwendig ist, um für die Parameter der wesentlichen Annahmen eine plausible Einstellung abzuleiten. Dabei ist auch zu prüfen, ob die erarbeitete Bewertungsmethodik für die Übertragung auf NRW noch ergänzt werden muss. Aus dem Abgleich der Bewertungsmethodik mit vorhandenen vereinfachten Nachweisen sollte dann eine Bewertung der GIS-gestützten Bewertungsmethodik erfolgen, um dem Anwender die Möglichkeiten und Grenzen dieses Verfahrens aufzuzeigen.
Literatur

Allgemein zugängliche Quellen (Bücher, Zeitschriften, Schriftenreihen etc.)

HMULV (2004b): Leitfaden für das Erkennen ökologisch kritischer Gewässerbelastungen durch Abwassereinleitungen in Hessen – Begleitband, Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz (HMULV)

KILIAN (1998): Abflusscharakteristika und potenziell natürliche Gerinnegrundrißformen von Fließgewässern in den verschiedenen Regionen Hessens, Mitteilungen des Instituts für Wasserbau und Wasserwirtschaft der Technischen Universität Darmstadt, Heft 100

MUNLV (2003): Entwicklung und Stand der Abwasserbeseitigung in Nordrhein-Westfalen, 10. Auflage, Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz der Landes NRW

MUNLV (2003b): Wasserwirtschaft Nordrhein-Westfalen, Handbuch zur naturnahen Entwicklung von Fließgewässern, Band 1, Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz der Landes NRW

Nicht allgemein zugängliche Arbeiten (Vortragsunterlagen, Diplomarbeiten, mündliche Mitteilungen, Forschungsberichte etc.)

KIT (2006): Auswertung der NIKLAS-IGL Daten, Keck Informations Technologie, unveröffentlicht

STUA DUISBURG (2005): Stellungnahme zum BWK-M 3 Nachweis der Stadt Dinslaken für den Rotbach, unveröffentlicht

Normen und Arbeitsblätter

ATV (1992): ATV Arbeitsblatt A128, Richtlinien für die Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen, Gesellschaft zur Förderung der Abwassertechnik e.V., St. Augustin (Hrsg.)

ATV (1999): ATV Arbeitsblatt A118, Hydraulische Bemessung und Nachweis von Entwässerungssystemen, Gesellschaft zur Förderung der Abwassertechnik e.V., St. Augustin (Hrsg.)

BWK (2006): Leitfaden zur detaillierten Nachweisführung immissionsorientierter Anforderungen an Misch- und Niederschlagswassereinleitungen gemäß BWK-Merkblatt 3, Arbeitsgruppe 2.3 des Bundes der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (BWK) e. V. erarbeitet für das MUNLV NRW

HMULV (2004a): Leitfaden für das Erkennen ökologisch kritischer Gewässerbelastungen durch Abwassereinleitungen in Hessen – Handlungsanleitung, Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz (HMULV)